если меняется только одна цифра, значит, меняется только один разряд числа: единицы, десятки, сотни и т.д.
• Изменяя только единицы, деление на 18 снова не получится. Потому что от одного числа, которое делится на 18, до другого должна быть разница хотя бы в эти самые 18.
• Изменяя десятки, мы делаем предположение, что какое-либо круглое двузначное число делится на 18, и это так:
90 : 18 = 5.
Таким образом, если найдётся число, у которого в разряде десятков стоит 0, и оно делится на 18, достаточно будет заменить 0 на 9, чтобы получить новое число, делящееся на 18.
Пример: 108 и 198.
Для числа 19 ответ: нет, нельзя.
Рассуждения аналогичные, только в десятках умножение 19 ни на какое число не даст круглого двузначного числа. То же самое и с сотнями, и с тысячами и т.п., ведь из девятки на конце может получиться нуль только умножением на 10, или кратное ему, а это нам не подходит, т.к. числа 190 и подобные ему будут изменять не один разряд числа, а несколько. Так что только одну цифру изменить никак не получится.
Для вычислений находим значение гипотенузы треугольника, лежащего в основании призмы по теореме Пифагора:
√((10)² + (24)²) = 26 см.
Боковая поверхность треугольной пирамиды состоит из 3 прямоугольников. Значит, ее площадь равна:
Sбп = S1 + S2 + S3, где S1, S2 и S3 — площади прямоугольников.
Площадь прямоугольника равна
S = ab, где a и b — стороны прямоугольника.
Найдем площадь первого прямоугольника:
S1 = 10* 5 = 50 см².
Найдем площадь второго прямоугольника:
S2 = 24 * 5 = 120 см².
Найдем площадь третьего прямоугольника:
S3 = 26 * 5 = 130 см².
Площадь боковой поверхности призмы:
Sбп = 50 + 120 + 130 = 300 см².
Площадь полной поверхности призмы равна
Sпп = Sбп + 2Sосн, где Sбп — площадь боковой поверхности, Sосн — площадь основания.
Sосн = ½ * 10 * 24 = 120 см².
Площадь полной поверхности призмы:
Sпп = 300 + 2 * 120 = 540 см².
ответ: площадь боковой поверхности призмы 300 см², площадь полной поверхности призмы 540 см².
Для числа 18 ответ: да, можно.
Я рассуждал так:
если меняется только одна цифра, значит, меняется только один разряд числа: единицы, десятки, сотни и т.д.
• Изменяя только единицы, деление на 18 снова не получится. Потому что от одного числа, которое делится на 18, до другого должна быть разница хотя бы в эти самые 18.
• Изменяя десятки, мы делаем предположение, что какое-либо круглое двузначное число делится на 18, и это так:
90 : 18 = 5.
Таким образом, если найдётся число, у которого в разряде десятков стоит 0, и оно делится на 18, достаточно будет заменить 0 на 9, чтобы получить новое число, делящееся на 18.
Пример: 108 и 198.
Для числа 19 ответ: нет, нельзя.
Рассуждения аналогичные, только в десятках умножение 19 ни на какое число не даст круглого двузначного числа. То же самое и с сотнями, и с тысячами и т.п., ведь из девятки на конце может получиться нуль только умножением на 10, или кратное ему, а это нам не подходит, т.к. числа 190 и подобные ему будут изменять не один разряд числа, а несколько. Так что только одну цифру изменить никак не получится.