1.11. Своему постоянному клиенту компания сотовой связи ре- шила предоставить на выбор одну из скидок: либо скидку 20% на звонки абонентам других компаний по Республике Казахстан, либо 25% на звонки зарубежных операторов, либо 15% на услу- ги мобильного интернета. Клиент рассмотрел распечатку своих звонков и выяснил, что за месяц он потратил 3000 тг на звонки по Республике Казахстан, 2500 тг на звонки зарубежных опера- торов и 2000 тг на мобильный интернет. Клиент предполагает, что в следующем месяце затраты будут такими же. 1) Какую из скидок выгоднее выбрать клиенту? 2) Сколько тенге составит эта скидка? 3) Если за месяц на звонки по Республике Казахстан будет потрачено 3500 тг, выгоднее ли взять скидку 20% на звонки абонентов компаний по Республике Казахстан и на сколько? 1.12. Решите методом интервалов неравенство:
Покажу подробное решение данной задачи. Чтобы не возникало вопросов, как это делать. Правда, процедура трудоёмкая, но вполне посильна каждому. Итак. Нам нужно решить уравнение. Решение таких уравнений основывается на простом факте. Вот он: если уравнение с целыми коэффициентами при неизвестных имеет ЦЕЛЫЙ корень, то искать его нужно среди делителей свободного члена. Свободный член у нас равен 6. Надо перебрать все его делители. Кандидаты на ответ следующие: +-1;+-2;+-3;+-6. Иначе говоря, мы сейчас угадаем один их корней уравнения, по которому мы найдём позже все остальные. Просто подставляем все делители 6 в уравнение, проверяя, чтобы было равенство. Проверяем: x = 1 1 - 1 - 3 - 2 + 2 + 6 = 3 - не 0, x = 1 - не корень уравнения Аналогично проверьте все остальные случаи.
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
Итак. Нам нужно решить уравнение.
Решение таких уравнений основывается на простом факте. Вот он: если уравнение с целыми коэффициентами при неизвестных имеет ЦЕЛЫЙ корень, то искать его нужно среди делителей свободного члена.
Свободный член у нас равен 6. Надо перебрать все его делители. Кандидаты на ответ следующие: +-1;+-2;+-3;+-6. Иначе говоря, мы сейчас угадаем один их корней уравнения, по которому мы найдём позже все остальные. Просто подставляем все делители 6 в уравнение, проверяя, чтобы было равенство. Проверяем:
x = 1 1 - 1 - 3 - 2 + 2 + 6 = 3 - не 0, x = 1 - не корень уравнения
Аналогично проверьте все остальные случаи.
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
18/(20+х) + 20/(20-х) = 2
20 · (20 + х) + 18 · (20 - х) = 2 · (20 + х) · (20 - х)
400 + 20х + 360 - 18х = 2 · (20² - х²)
760 + 2х = 800 - 2х²
760 + 2х - 800 + 2х² = 0
2х² + 2х - 40 = 0
х² + х - 20 = 0
D = b² - 4ac = 1² - 4 · 1 · (-20) = 1 + 80 = 81
√D = √81 = 9
х₁ = (-1-9)/(2·1) = (-10)/2 = -5 (не подходит, так как < 0)
х₂ = (-1+9)/(2·1) = 8/2 = 4
ответ: 4 км/ч - скорость течения реки.
Проверка:
18/(20+4) + 20/(20-4) = 0,75 + 1,25 = 2 ч - время движения