Ошибки в построении предложений с деепричастным оборотом Вступая в должность начальника госпиталя, перед глазами Н.И. Пирогова предстала ужасная картина: для операций не было при помещений, кругом царила антисанитария.
Сформулировав в сочинении собственное мнение, у меня возникла неожиданная идея. Прочитав роман известного писателя, нас вдруг осенила мысль о подлинном источнике этой книги.
Выслушав рассказ Одиссея, царём Алкиноем было отдано распоряжение снарядить корабль, чтобы путешественник смог вернуться на родину.
Исполняя эту роль, у зрителей возникло двойственное чувство от игры актёра.
Расположившись на земляной насыпи, зрителям был виден весь стадион.
Работая над сочинением, мне было сделано замечание.
Подъезжая к дому, нам послышался чей-то крик.
Сдав экзамен на степень бакалавра, у него закружилась голова от успеха.
Находясь в пути, всегда вспоминаешь дом.
Пользуясь фразеологическим словарём, меня поразило богатство языка.
Выражая свой взгляд на проблему одиночества в мировой литературе, мной был задан вопрос докладчику.
Изучая фольклор, композитором были созданы прекрасные лирические произведения.
Напишите как будет правильно плз.
Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение, разность, симметрическая разность) нескольких (часто — трёх) подмножеств универсального множества. На диаграммах Венна универсальное множество {\displaystyle U}U изображается множеством точек некоторого прямоугольника, в котором располагаются в виде кругов или других фигур все остальные рассматриваемые множества[1][2].
Диаграммы Венна применяются при решении задач вывода логических следствий из посылок, выразимых на языке формул классического исчисления высказываний и классического исчисления одноместных предикатов[3], для :
описания функционирования формальных нейронов Мак-Каллока и сетей из них[4]
синтеза надежных сетей из не вполне надежных элементов[5],
построения управляющих и самоуправляющихся систем и блочного анализа и синтеза сложных устройств[6],
получения логических следствий из заданной информации, минимизации формул исчислений[7][8].
Диаграммы Венна при фигур изображают все {\displaystyle 2^{n}}2^{n} комбинаций {\displaystyle n}n свойств, то есть конечную булеву алгебру[9]. При {\displaystyle n=3}n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
Дальнейшим развитием аппарата диаграмм Венна в классическом исчислении высказываний является аппарат вероятностных диаграмм [10], понятие сети диаграмм, использующей диаграммы Венна как операторы[11].
Они появились в сочинениях английского логика Джона Венна (1834—1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.
Леонарду Эйлеру задали во можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался. В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что во показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...». При решении многих задач Л. Эйлер изображал множества с кругов, поэтому они и получили название «круги Эйлера». Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна. Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.
Объяснение:
вот