Зто просто на осях Х и У. а(-4,6) это значит х=-4 у=6. Откладываем по оси х в отрицательном направлении 4 единицы, а по оси у поднимаемся вверх с этого места на 6 единиц. Получим точку а. Также в. 8 единиц по оси х. И потом вниз на 3 единицы. За единичный отрезок берем 1 клетку. ^ У *а ! 6 ! 5 ! 4 ! 3 ! 2 ! 1 -5- -4-- -3- -2-- -1--0--1--2--3--4---5--6--7--8-> Х ! -1 ! -2 ! -3 *в ! -4 ! -5 ! -6 ! -7 ! -8
Пошаговое объяснение:
y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y=(-4x-4)/5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5*(6/29)-2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ=(k₂-k₁)/(1+k₁k₂)
где k₁ и k₂ угловые коэффициенты, в наших уравнения они равны
k₁=5; k₂=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k₁k₂=0):
1+5*(-4/5)=1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ=(-4/5-5)/-3=29/15
φ=arctg(29/15) ≈ 1,0934 рад ≈ 63°
Y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y = (-4x-4) / 5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5 * (6/29) - 2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ = (k2-k1) / (1+k1k2)
где k1 и k2 угловые коэффициенты, в наших уравнения они равны
k1=5; k2=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k1k2=0) :
1+5 * (-4/5) = 1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ = (-4/5-5) / - 3=29/15
φ=arctg (29/15) ≈ 1,0934 рад ≈ 63° 5x - 2 = -0,8x - 0,8;
5x + 0,8x = 2 - 0,8;
5,8x = 1,2;
x = 1,2 / 5,8 = 12/58 = 6/29.
y = 5x - 2 = 5 * 6/29 - 2 = 30/29 - 58/29 = -28/29.
(x; y) = (6/29; -28/29). tg(α1) = k1 = 5;
tg(α2) = k2 = -0,8;
tgα = |tg(α1 - α2)|;
tgα = |(tg(α1) - tg(α2)) / (1 + tg(α1)tg(α2))|;
tgα = |(k1 - k2) / (1 + k1k2)|;
tgα = |(5 + 0,8) / (1 - 5 * 0,8)|;
tgα = |5,8 / (-3)| = 29/15;
α = arctg(29/15).
а) точка пересечения прямых: (6/29; -28/29);
^ У
*а ! 6
! 5
! 4
! 3
! 2
! 1
-5- -4-- -3- -2-- -1--0--1--2--3--4---5--6--7--8-> Х
! -1
! -2
! -3 *в
! -4
! -5
! -6
! -7
! -8