1. cosx= -√3/2
x₁ = 5п/6+2пk; х₂ = 7п/6+2пk, k∈ℤ
2. sinx = 1/2
х₁ = п/6+2пk; x₂ = 5п/6+2пk, k∈ℤ
3. tgx= -1
х = -п/4+пk, k∈ℤ
4. cosx = -1
x = п+2пk, k∈ℤ
5. sinx = √2/2
x₁ = п/4+2пk; х₂ = 3п/4+2пk, k∈ℤ
6. tgx = √3/3
x = п/6+пk, k∈ℤ
sint ≤ - √3/2
4п/3+2пk ≤ t ≤ -п/3+2пk, k∈ℤ
ctgt > 0
пk < t < п/2+пk, k∈ℤ
1. cosx= -√3/2
x₁ = 5п/6+2пk; х₂ = 7п/6+2пk, k∈ℤ
2. sinx = 1/2
х₁ = п/6+2пk; x₂ = 5п/6+2пk, k∈ℤ
3. tgx= -1
х = -п/4+пk, k∈ℤ
4. cosx = -1
x = п+2пk, k∈ℤ
5. sinx = √2/2
x₁ = п/4+2пk; х₂ = 3п/4+2пk, k∈ℤ
6. tgx = √3/3
x = п/6+пk, k∈ℤ
sint ≤ - √3/2
4п/3+2пk ≤ t ≤ -п/3+2пk, k∈ℤ
ctgt > 0
пk < t < п/2+пk, k∈ℤ