С давних пор у разных народов для измерения малых предметов и расстояния использовались мелкие единицы длины «естественного» происхождения. Их первыми эталонами служили отдельные части человеческого тела. Как и при счете, в ход пошли всегда бывшие при себе «измерительные инструменты» - рука и ее части. Весьма удобными для замеров такого рода оказались длина и ширина указательного пальца, а также ширина ладони. Для определения величины предметов покрупнее подошло расстояние от локтя до кончика среднего пальца, которое к тому же хорошо согласовывалось с размерами пальца и ладони.
Данные пары уравнений равносильны.
Пошаговое объяснение:
Если предположить, что автор просит проверить, являются ли данные уравнения равносильными, то решение следующее:
1.
|y+2|=7
у + 2 = 7 или у + 2 = - 7
1) у + 2 = 7
у = 7 - 2
у = 5;
2) у + 2 = - 7
у = - 7 - 2
у = - 9.
ответ: - 9; 5.
Решим второе уравнение:
(y-5)(y+9)=0
y-5 = 0 или y+9 = 0
у = 5 или у = - 9.
ответ: - 9; 5.
Вывод:
Уравнения |y+2|=7 и (y-5)(y+9)=0 равносильны.
2.
l2y+5|=3
2y + 5 = 3 или 2y + 5 = - 3
1) 2y + 5 = 3
2y = 3 - 5
2у = - 2
у = - 2:2
у = - 1.
2) 2y + 5 = - 3
2у = - 3 - 5
2у = - 8
у = - 8 : 2
у = - 4
ответ: - 4; -1.
Решим второе уравнение:
(y+1)(y+4)=0
y+1 = 0 или y+4= 0
у = - 1 или у = - 4
ответ: - 4; -1.
Вывод:
Уравнения |2y+5| = 3 и (у+1)(у+4)=0 равносильны.