Прямокутний трикутник — трикутник, один із кутів якого прямий. Прямокутний трикутник займає особливе місце в планіметрії, оскільки для нього існують прості співвідношення між сторонами і кутами.
Сторони прямокутного трикутника мають власні назви. Дві сторони, що утворюють прямий кут називаються катетами, а третя сторона — гіпотенузою. Традиційно катети позначаються літерами a та b, а гіпотенуза — літерою c. За теоремою Піфагора можна знайти будь-яку сторону прямокутного трикутника, якщо відомі дві інші сторони. За теоремою Піфагора квадрат гіпотенузи дорівнює сумі квадратів катетів.
Из пункта А в пункт В выехал велосипедист, через 1 час 20 минут вслед за ним выехал автобус. Сколько минут в пути был автобус если скорость велосипедиста в 3 раза меньше, чем скорость автобуса?
Расстояние между А и В не указано, примем за 1.
1 час 20 минут= 1 час 20/60 часа= 1 час 2/6= 1 час 1/3= 4/3 часа.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
3х - скорость автобуса.
1/х - время в пути велосипедиста.
1/3х - время автобуса.
Прибыли в пункт В одновременно.
По условию задачи уравнение:
1/х=1/3х+4/3
Общий знаменатель 3х, надписываем над числителями дополнительные множители, избавляемся от дроби:
Прямокутний трикутник — трикутник, один із кутів якого прямий. Прямокутний трикутник займає особливе місце в планіметрії, оскільки для нього існують прості співвідношення між сторонами і кутами.
Сторони прямокутного трикутника мають власні назви. Дві сторони, що утворюють прямий кут називаються катетами, а третя сторона — гіпотенузою. Традиційно катети позначаються літерами a та b, а гіпотенуза — літерою c. За теоремою Піфагора можна знайти будь-яку сторону прямокутного трикутника, якщо відомі дві інші сторони. За теоремою Піфагора квадрат гіпотенузи дорівнює сумі квадратів катетів.
{\displaystyle AB^{2}=AC^{2}+BC^{2}}{\displaystyle AB^{2}=AC^{2}+BC^{2}}
Звідси можна знайти інші сторони прямокутного трикутника.
{\displaystyle AC^{2}=AB^{2}-BC^{2}}{\displaystyle AC^{2}=AB^{2}-BC^{2}}
{\displaystyle BC^{2}=AB^{2}-AC^{2}}{\displaystyle BC^{2}=AB^{2}-AC^{2}}
Катети є водночас висотами прямокутного трикутника. Тому площа прямокутного трикутника дорівнює:
{\displaystyle S={\frac {1}{2}}ab}{\displaystyle S={\frac {1}{2}}ab}.
Зміст
1 Властивості прямокутних трикутників
2 Ознаки рівності прямокутних трикутників
3 Тригонометрія у прямому трикутнику
4 Вписане й описане коло прямокутного трикутника
4.1 Описане коло
4.2 Вписане коло
5 Теорема про висоту прямокутного трикутника
6 Джерела
7 Див. також
8 Примітки
9 Посилання
Пошаговое объяснение:
40 (минут) - время в пути автобуса.
Пошаговое объяснение:
Из пункта А в пункт В выехал велосипедист, через 1 час 20 минут вслед за ним выехал автобус. Сколько минут в пути был автобус если скорость велосипедиста в 3 раза меньше, чем скорость автобуса?
Расстояние между А и В не указано, примем за 1.
1 час 20 минут= 1 час 20/60 часа= 1 час 2/6= 1 час 1/3= 4/3 часа.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
3х - скорость автобуса.
1/х - время в пути велосипедиста.
1/3х - время автобуса.
Прибыли в пункт В одновременно.
По условию задачи уравнение:
1/х=1/3х+4/3
Общий знаменатель 3х, надписываем над числителями дополнительные множители, избавляемся от дроби:
3=1+4х
4х=2
х=1/2 (км/час) - скорость велосипедиста.
1/2*3=3/2 (км/час) - скорость автобуса.
1 : 3/2 = 2/3 (часа) - время в пути автобуса.
В минутах:
2/3 * 60 = 40 (минут).
Проверка:
1 : 1/2=2 (часа) - время в пути велосипедиста.
2 = 4/3 +2/3 = 6/3 = 2 (часа), верно.