Запиши уравнение к задаче, начало решения которой выглядит так:
1-я пачка 2-я пачка
Было тетрадей
2x
x
Стало тетрадей
2x − 20
x+29
Известно, что количество тетрадей, получившихся в каждой пачке, было одинаковым.
Найди количество тетрадей, которые были во 2-й пачке.
ответ (записывай без промежутков, начиная с выражения в 1-м столбике, для переменной используй латинскую раскладку):
1.
.
2. Количество тетрадей во 2-й пачке: было
.
Правила набора
В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом (доход 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при числительного и прилагательного процентный. Например: 20%-я сметана (означает двадцатипроцентная сметана), 10%-й раствор, 20%-му раствору, но жирность сметаны составляет 20 %, раствор концентрацией 10 % и т. п.
Это правило набора введено в действие в 1982 году нормативным документом ГОСТ 8.417—81 (впоследствии заменённым на ГОСТ 8.417—2002); ранее нормой было не отделять знак процента пробелом от предшествующей цифры. В настоящее время правило отбивки знака процента не является общепризнанным. До сих пор многие российские издательства не следуют рекомендациям ГОСТ 8.417—2002 и по-прежнему придерживаются традиционных правил набора, то есть при наборе знак процента от предшествующего числа не отделяется.
Разговорное употребление
«Работать за проценты» — работать за вознаграждение, исчисляемое в зависимости от прибыли или оборота.«На все сто (процентов)» — прекрасный во всех отношениях; всецело, полностью, целиком[1].«Процентщик» — человек, ссужающий деньги под большие проценты, ростовщик.
Сравнение величин в процентах
Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах. Если сравнение по разности вполне однозначно, то есть всегда можно найти, насколько одна величина больше или меньше другой, то для сравнения в процентах нужно указывать, относительно какой величины вычисляется процент. Такое указание, впрочем, необязательно в том случае, когда говорят, что одна величина больше другой на число процентов, превышающее 100. В этом случае остается только одна возможность вычисления процента, а именно деление разности на меньшее из двух чисел с последующим умножением результата на 100.
Процент – это сотая часть единицы. Запись 1% означает 0.01. Существует три основных типа задач на проценты:
Задача 1. Найти указанный процент от заданного числа. Заданное число умножается на указанное число процентов, а затем произведение делится на 100.
П р и м е р . Вклад в банке имеет годовой прирост 6%. Начальная сумма вклада равнялась 10000 руб. На сколько возрастёт сумма вклада в конце года? Р е ш е н и е : 10000 · 6 : 100 = 600 руб.
Задача 2. Найти число по заданному другому числу и его величине в процентах от искомого числа. Заданное число делится на его процентное выражение и результат умножается на 100.
П р и м е р . Зарплата в январе равнялась 1500 руб., что составило 7.5% от годовой зарплаты. Какова была годовая зарплата?
Р е ш е н и е : 1500 : 7.5 · 100 = 20000 руб.
Задача 3. Найти процентное выражение одного числа от другого.Первое число делится на второе и результат умножается на 100.П р и м е р . Завод произвёл за год 40000 автомобилей, а в следующем году – только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года?
Р е ш е н и е : 36000 : 40000 · 100 = 90% .