Т.к. нужно узнать максимальное количество девочек, то нужно предположить, что одна из них подарит только одну валентинку, следующая -2, третья девочка - 3 валентинки и т.д.Причем каждая последующая девочка может поздравлять тех же мальчиков, что и предыдущие и плюс еще одного, т. к никакте две девочки не вручили одинаковое количество открыток.Значит четвертая поздравила предыдущих три и еще одно, пятая - предыдущих четыре и еще одного. Таким образом предполагаем, что наибольшее количество девочек 29
29
Пошаговое объяснение:
Т.к. нужно узнать максимальное количество девочек, то нужно предположить, что одна из них подарит только одну валентинку, следующая -2, третья девочка - 3 валентинки и т.д.Причем каждая последующая девочка может поздравлять тех же мальчиков, что и предыдущие и плюс еще одного, т. к никакте две девочки не вручили одинаковое количество открыток.Значит четвертая поздравила предыдущих три и еще одно, пятая - предыдущих четыре и еще одного. Таким образом предполагаем, что наибольшее количество девочек 29
Дано: 258х + 2x – 80 = 700 ; 50x +40x = 540.
Доказать: тождество.
Док-во:
1. Рассмотрим первое уравнение.
258х + 2x – 80 = 700 ;
1) Сложив одинаковые переменные (258х и 2х; 700 и 80) получаем следующее:
258х + 2х = 700 + 80.
260х = 780
х = 3.
2) Проверим полученный корень, подставив его в изначальное выражение:
258 * 3 + 2 * 3 - 80 = 700
774 + 6 - 80 = 700
774 - 74 = 700.
700 = 700.
Доказано.
2. Рассмотрим второе тождество.
50x +40x = 540
1) Сложив одинаковые переменные (50х и 40х) получаем следующее:
90х = 540
х = 6.
2) Проверим полученный корень, подставив его в изначальное выражение:
50 * 6 + 40 * 6 = 540.
300 + 240 = 540
540 = 540.
Доказано.