Та́нго (исп. tango) — аргентинский народный танец; парный танец свободной композиции, отличающийся энергичным и четким ритмом[1]. Изначально исполнялся исключительно мужчинами.
Сперва получил развитие и распространение в Аргентине, затем стал популярен во всем мире. Танго также называлось «танго криольо» (tango criollo), что и значило «аргентинское»[2][3].
Са́мба (порт. samba) — бразильский танец, символ национальной идентичности бразильцев.
Танец обрёл мировую известность благодаря бразильским карнавалам. Одна из разновидностей самбы вошла в обязательную пятёрку латиноамериканской программы бальных танцев. Исполняется в темпе 50-52 удара в минуту, в размере 2/4 или 4/4.
В русском языке слово самба имеет женский род, а в португальском — мужской[1].
Та́нго (исп. tango) — аргентинский народный танец; парный танец свободной композиции, отличающийся энергичным и четким ритмом[1]. Изначально исполнялся исключительно мужчинами.
Сперва получил развитие и распространение в Аргентине, затем стал популярен во всем мире. Танго также называлось «танго криольо» (tango criollo), что и значило «аргентинское»[2][3].
Са́мба (порт. samba) — бразильский танец, символ национальной идентичности бразильцев.
Танец обрёл мировую известность благодаря бразильским карнавалам. Одна из разновидностей самбы вошла в обязательную пятёрку латиноамериканской программы бальных танцев. Исполняется в темпе 50-52 удара в минуту, в размере 2/4 или 4/4.
В русском языке слово самба имеет женский род, а в португальском — мужской[1].
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)