Задания 2. Реши задачу с уравнения. На базе было 936 центнеров фруктов. После того, как несколько центнеров фруктов увезли на 7 машинах поровну на каждой, там осталось 194 центнеров фруктов. Сколько центнеров фруктов погрузили на каждую машину?
в первой книге 255 страниц, во второй книге 204 страницы, а третьей книге 51 страница
Пошаговое объяснение:
Обозначим через х число страниц в первой книге.
В условии задачи сказано, что число страниц во второй книге составляет 80% числа страниц первой книге, следовательно, во второй книге (80/100)х = (8/10)х = 0.8х страниц.
Также известно, что число страниц в третьей книге составляет 25% числа во второй, следовательно, в третьей книге (25/100) * 0.8х = (1/4) * 0.8х = 0.2х страниц.
По условию задачи, в среднем в каждой книге по 170 страниц, следовательно, можем составить следующее уравнение:
(х + 0.8х + 0.2х) / 3 = 170.
Решаем полученное уравнение:
2х/3 = 170;
2х = 170 * 3;
2х = 510;
х = 510 / 2;
х = 255.
Следовательно, во второй книге 0.8х = 0.8 * 255 = 204 страницы, а в третьей книге 0.2х = 0.2 * 255 = 51 страница.
1. Найдем точки АВС.
x+y=2 и 2x-y=-2
y = 2 - x
y = 2x + 2 - уравнения прямых:
2. Найдем точку пересечения:
2 - x = 2x + 2
2x = 4
x = 2
y = 0
точка А (2;0) - координаты
Стороны x+y=2 - AB
2x-y=-2 - АС , следовательно
уравнение стороны ВС
x-2y=2
x - 2y - 2 = 0 - уравнение стороны ВС
Вектор с координатами (1, -2) перпендикулярен стороне ВС.
Используя этот вектор как направляющий, построим уравнение прямой, проходящей через точку А.
Прямая будет перпендикулярна ВС, будет и высотой.
Направляющий вектора (1, -2) ( BC) точка А (2,0)
(x - 2)/1 = y/-2
или
y = 4 - 2x - искомое уравнение высоты.
в первой книге 255 страниц, во второй книге 204 страницы, а третьей книге 51 страница
Пошаговое объяснение:
Обозначим через х число страниц в первой книге.
В условии задачи сказано, что число страниц во второй книге составляет 80% числа страниц первой книге, следовательно, во второй книге (80/100)х = (8/10)х = 0.8х страниц.
Также известно, что число страниц в третьей книге составляет 25% числа во второй, следовательно, в третьей книге (25/100) * 0.8х = (1/4) * 0.8х = 0.2х страниц.
По условию задачи, в среднем в каждой книге по 170 страниц, следовательно, можем составить следующее уравнение:
(х + 0.8х + 0.2х) / 3 = 170.
Решаем полученное уравнение:
2х/3 = 170;
2х = 170 * 3;
2х = 510;
х = 510 / 2;
х = 255.
Следовательно, во второй книге 0.8х = 0.8 * 255 = 204 страницы, а в третьей книге 0.2х = 0.2 * 255 = 51 страница.