Задачи по теме « Равнобедренный треугольник»
1. В треугольнике АВС углы ВАС и ВСА равны, их биссектрисы АА1 и СС1 пересекаются в точке О. Докажите, что треугольник АОС равнобедренный.
2. Найдите периметр треугольника АВС если два его угла равны, а две стороны имеют длины 40 см и 20см.
3. В треугольнике АВС угол В=1200 , а угол А= 300 . Точка D принадлежит стороне АС, причем угол ВDС тупой. Докажите, что АВ >ВD.
4.Разность длин двух сторон равнобедренного тупоугольного треугольника равна 4 см, а его периметр равен 19 см.Найдите длины сторон треугольника.
5. В равнобедренном треугольнике АВС угол В - тупой. Высота ВD равна 4 см. Найдите периметр треугольника АВС, если периметр треугольника АВD равен 12 см.
6.В треугольнике АВС внешние углы при вершинах А и С равны. Найдите длину биссектрисы ВD , если периметр треугольника АВС равен 72 см, а периметр треугольника АВD равен 48 см.
Задачи по теме « Признаки равенства треугольников»
1. На высоте АН равнобедренного треугольника с углом А=90 взята точка О. Докажите, что треугольники ВОН и НОС равны.
2. В треугольнике КМР КМ=МР. Точки А и В середины сторон KM и MP соответственно. АС и ВD перпендикулярны прямой КР. Докажите, что треугольники КАС и DВР равны.
3. Даны равносторонние треугольники АВС и А1В1С1 точки О и О1 – точки пересечения высот этих треугольников, причем ОА= О1А1 . Докажите, что треугольники АВС и А1В1С1 равны.
4. Треугольник АВС равносторонний. AC – основание. Точки К , L , М- середины сторон АВ , ВС и АС соответственно . Докажите, что треугольники АКМ и МLC равны.
5. Даны треугольники АВС , с высотой СН , и KMN с высотой NL . Причем , угол В=60, угол М=60, СН=LN и АВ=KM. Докажите , что треугольники АВС и KMN равны.
6. В равнобедренном треугольнике АВС ВК – медиана, проведенная к основанию. Точки М и N принадлежат боковым сторонам. Луч КВ – биссектриса угла МКN . Докажите, что АМ=NC.
Задачи по теме « Окружность»
1. В окружности с центром О проведены радиусы ОК , ОМ , ОN , таким образом ,что углы КОМ и МОN равны. Докажите , что треугольники КОМ и МОN равны.
2. В окружности с центром О диаметру АС перпендикулярен радиус ОВ. Докажите, что АВ=ВС.
3. В окружности с центром О проведены две непараллельные хорды КМ и РN , причем КМ= РN. Точка А – середина КМ, точка В – середина Р N . Докажите, что треугольник АОВ равнобедренный.
Задачи по теме «Смежные и вертикальные углы»
1. Один из углов, образовавшихся при пересечении двух прямых равен 48 .Найти остальные углы.
2. Дан треугольник АВС. На продолжении сторон АВ и ВС за вершину В отмечены точки К и М соответственно. Угол КВМ=300 Угол А в 3 раза больше угла С. Найти угол, смежный с углом С.
3. На окружности с центром О последовательно отмечены точки А, В, С, D, К так, что точки А и К являются концами диаметра, углы АОС и СОК равны. Угол АОВ= 30 , угол DОК=60 . Докажите, что ВD=АС.
Задачи по теме «Параллельные прямые»
1. Отрезки KM и PL –диаметры некоторой окружности. Докажите, что прямые KP и ML параллельны.
2. Точки А и С лежат по разные стороны от прямой BD . Известно, что АВ параллельна DC и AD параллельна ВС. Докажите, что угол BAD равен углу DCB, АВ=DC и AD= BC.
3. На биссектрисе CD равнобедренного треугольника АВС взята точка М. Через эту точку проведены прямые, параллельные сторонам АС и ВС и пересекающие основание АВ в точках Н и К. Докажите, что АН=КВ.
4. На сторонах MP и PN треугольника MPN взяты точки А и В соответственно. Угол PMN равен углу РАВ и равен 60, угол MNP равен 50. Найдите, чему равен угол АВN.
5. В треугольнике АВС угол А равен 30, угол С равен 120. Докажите, что биссектриса внешнего угла при вершине С лежит на прямой, параллельной прямой АВ.
6. На одной стороне неразвернутого угла взяты точки E и F, на другой – G и H , так, чтобы EG параллельно FH , точка М принадлежит отрезку EG , угол MFE равен углу MFH, угол MHF равен MHG. Докажите, что EG= EF+GH.
ответ: 125/6 = 20 5/6 кв. ед.
Пошаговое объяснение:
Найдите площадь фигуры ограниченной линиями
y=5x+x^2+2, y=2.
Строим графики функций (См. скриншот).
Площадь S=S(AmB) - S(AnB).
По формуле Ньютона-Лейбница
S=∫ₐᵇf(x)dx=F(x)|ₐᵇ = F(b)-F(a).
Пределы интегрирования (См. скриншот) a= -5; b=0. Тогда
S=∫₋₅⁰2dx - ∫₋₅⁰(5x+x^2+2)dx = 125/6 = 20 5/6 кв. ед.
1) ∫₋₅⁰2dx=2∫₋₅⁰dx = 2x|₋₅⁰ = 2(0-(-5))=10;
2) ∫₋₅⁰(5x+x^2+2)dx = 5∫₋₅⁰xdx + ∫₋₅⁰x²dx + 2∫₋₅⁰dx =
= 5(x²/2)|₋₅⁰+x³/3|₋₅⁰ + 2(x)|₋₅⁰ = 5/2(0²-(-5)²) + 1/3(0³-(-5)³) + 2(0-(-5)) =
=5/2*(-25) + 1/3*125 +2*5 = -65/6
3) 5-(-65/6) = 10+65/6 = 125/6 = 20 5/6 кв. ед.
Чтобы пятизначное число было кратно 15 оно должно делиться нацело на 3 и на 5. Признаком делимости на 5 – последняя цифра 5 или 0. А признак делимости на 3 – сумма цифр кратна 3. Исходя из этих правил, подберем пятизначное кратное 15 и с двумя соседними цифрами, отличающимися на 2. Например, такое. Возьмем последнюю цифру 5, предпоследнюю 7 (отличаются на 2), а оставшиеся три выберем так, чтобы сумма цифр была кратна 3:
abc75
Цифры 7+5 = 12 – кратны 3. А другие цифры возьмем следующими: a=1, b = 3, c = 5. Получаем пятизначное:
13575
кратно 15 и любые две цифры отличаются на 2.
ответ: 13575