За столом по кругу сидят 143 143 человека, каждый из которых является рыцарем или лжецом. Каждый из них произнёс фразу: «Следующие k человек, сидящие после меня по часовой стрелке, лжецы». При каких натуральных >1 k > 1 это возможно?
1. Все лжецами быть не могут, потлмучто тогда они говорят правду независимо от k. Значит есть хотя бы 1 рыцарь.
2. Выбираем рыцаря, следущие k от него - лжецы. Но далее должен идти рыцарь.*
* Если k+1 оказался лжецом, то 1 после начального рыцаря говорил правду, что невозможно.
3. В результате получаем следующую картину: рыцарь - k лжецов, рыцарь - k лжецов... В итоге мы должны наткнуться на нашего начального рыцаря как начало нового звена. То есть всех сидящих можно записать как A=n*(1+k), где n - количество звеньев, n>=1
то есть: n*(1+k) = 143
n*(1+k) = 11*13
то есть при n=1 -> 1+k=143 или k=142
если n=/=1, то 1+k является одним из простых множителей 143, то есть k=10, 12.
Короче:
1. Все лжецами быть не могут, потлмучто тогда они говорят правду независимо от k. Значит есть хотя бы 1 рыцарь.
2. Выбираем рыцаря, следущие k от него - лжецы. Но далее должен идти рыцарь.*
* Если k+1 оказался лжецом, то 1 после начального рыцаря говорил правду, что невозможно.
3. В результате получаем следующую картину: рыцарь - k лжецов, рыцарь - k лжецов... В итоге мы должны наткнуться на нашего начального рыцаря как начало нового звена. То есть всех сидящих можно записать как A=n*(1+k), где n - количество звеньев, n>=1
то есть: n*(1+k) = 143
n*(1+k) = 11*13
то есть при n=1 -> 1+k=143 или k=142
если n=/=1, то 1+k является одним из простых множителей 143, то есть k=10, 12.