Оценим максимальное значение, которое может принимать элемент множества . Предположим, что существуют хотя бы два элемента множества, больших . Пусть это числа . Положим , тогда , откуда . Противоречие. Значит, существует не более одного числа, большего
Теперь становится ясно, как строить множество. Пусть максимальное число равно . Тогда следующее по величине число меньше , где — текущее число (сейчас рассматривается максимальное число; оценка следует из исходного уравнения). То есть второе по величине число не превосходит . Берем 47. Далее: . Берем 28. И так далее. Получим множество , состоящее из 11 элементов. Это и есть наш ответ.
506√3 см²
Пошаговое объяснение:
Один из углов равнобедренной трапеции равен 150°. Вычисли площадь трапеции, если её меньшее основание равно 13 см, а боковая сторона равна 22√3 см.
Дано: АВСД - трапеция, АВ=СД=22√3 см.
ВС=13 см.
Найти S.
Решение: Проведем две высоты ВН и СК. Рассмотрим Δ АВН - прямоугольный.
∠АВН=150-90=60°, тогда ∠А=30°, а ВН=12 АВ=11√3 см. (как катет, лежащий против угла 30°)
Найдем АН по теореме Пифагора:
АН²=(22√3)² - (11√3)² = 1452-363=1089; АН=√1089=33 см.
ДК=АН=33 см
АД=АН+КН+ДК=33+13+33=79 см.
S=(13+79):2*11√3=506√3 cм²
ответ: 506√3 см²
Оценим максимальное значение, которое может принимать элемент множества . Предположим, что существуют хотя бы два элемента множества, больших . Пусть это числа . Положим , тогда , откуда . Противоречие. Значит, существует не более одного числа, большего
Теперь становится ясно, как строить множество. Пусть максимальное число равно . Тогда следующее по величине число меньше , где — текущее число (сейчас рассматривается максимальное число; оценка следует из исходного уравнения). То есть второе по величине число не превосходит . Берем 47. Далее: . Берем 28. И так далее. Получим множество , состоящее из 11 элементов. Это и есть наш ответ.