\begin{lgathered}\left|a\right| = \begin{cases} a, & a \geqslant 0 \\ -a & a < 0\end{cases}\end{lgathered}
∣a∣={
a,
−a
a⩾0
a<0
Вся координатная плоскость состоит из четырёх квадрантов, в каждом из которых знак xx и yy остаётся постоянным, поэтому в каждом квадранте можно избавиться от модулей и построить соответствующие фрагменты графика \left|x\right| + \left|y\right| = 1∣x∣+∣y∣=1 .
1. Пусть x > 0x>0 и y > 0y>0 , тогда \left|x\right| + \left|y\right| = x + y = 1∣x∣+∣y∣=x+y=1 , поэтому в I-й четверти строим график функции y = 1 - xy=1−x .
2. Пусть x < 0x<0 и y > 0y>0 , тогда \left|x\right| + \left|y\right| = -x + y = 1∣x∣+∣y∣=−x+y=1 , поэтому во II-й четверти строим график функции y = 1 + xy=1+x .
3. Пусть x < 0x<0 и y < 0y<0 , тогда \left|x\right| + \left|y\right| = -x - y = 1∣x∣+∣y∣=−x−y=1 , поэтому в III-й четверти строим график функции y = -1 - xy=−1−x .
4. Пусть x > 0x>0 и y < 0y<0 , тогда \left|x\right| + \left|y\right| = x - y = 1∣x∣+∣y∣=x−y=1 , поэтому в IV-й четверти строим график функции y = x - 1y=x−1 .
График с пояснениями и этапами построения приведён на прилагаемом рисунке.
Пошаговое объяснение:
1) Які з чисел 504, 735, 1 002, 2 037, 7236 діляться на З?
Число ділиться на 3 , якщо сума його цифр ділиться на 3 .
Знайдемо суму цифр кожного числа :
504 : 5+0+4=9 - ділиться на 3
735 : 7 + 3+ 5 = 15 - ділиться на 3
1002 : 1+0+0+2 = 3 - ділиться на 3
2037 : 2+ 0+ 3+7= 12 - ділиться на 3
7236 : 7 + 2 + 3 + 6 = 18 - ділиться на 3
Як бачимо всі числа діляться на 3
2) Які з чисел 405, 738, 2 001, 7 704, 333 діляться на 9?
Число ділиться на 9 , якщо сума його цифр ділиться на 9 .
Знайдемо суму цифр кожного числа :
405 : 4+0+5 = 9 - ділиться на 9
738: 7 + 3 + 8 = 18 - ділиться на 9
2001 : 2 + 0+0+1 = 3 - не ділиться на 9
7704 : 7 + 7 + 0+ 4 = 18 - ділиться на 9
333 : 3+3+3= 9 - ділиться на 9
З наведених чисел на 9 діляться : 405, 738, 7 704, 333
Для построения графика \left|x\right| + \left|y\right| = 1∣x∣+∣y∣=1 воспользуемся определением модуля числа:
\begin{lgathered}\left|a\right| = \begin{cases} a, & a \geqslant 0 \\ -a & a < 0\end{cases}\end{lgathered}
∣a∣={
a,
−a
a⩾0
a<0
Вся координатная плоскость состоит из четырёх квадрантов, в каждом из которых знак xx и yy остаётся постоянным, поэтому в каждом квадранте можно избавиться от модулей и построить соответствующие фрагменты графика \left|x\right| + \left|y\right| = 1∣x∣+∣y∣=1 .
1. Пусть x > 0x>0 и y > 0y>0 , тогда \left|x\right| + \left|y\right| = x + y = 1∣x∣+∣y∣=x+y=1 , поэтому в I-й четверти строим график функции y = 1 - xy=1−x .
2. Пусть x < 0x<0 и y > 0y>0 , тогда \left|x\right| + \left|y\right| = -x + y = 1∣x∣+∣y∣=−x+y=1 , поэтому во II-й четверти строим график функции y = 1 + xy=1+x .
3. Пусть x < 0x<0 и y < 0y<0 , тогда \left|x\right| + \left|y\right| = -x - y = 1∣x∣+∣y∣=−x−y=1 , поэтому в III-й четверти строим график функции y = -1 - xy=−1−x .
4. Пусть x > 0x>0 и y < 0y<0 , тогда \left|x\right| + \left|y\right| = x - y = 1∣x∣+∣y∣=x−y=1 , поэтому в IV-й четверти строим график функции y = x - 1y=x−1 .
График с пояснениями и этапами построения приведён на прилагаемом рисунке.