1. Область допустимых значений переменной:
√(x + 3) ≤ 1 - x;
x + 3 ≥ 0;
x ≥ -3;
x ∈ [-3; ∞). (1)
2. Квадратный корень всегда больше или равен нулю, следовательно, неравенство имеет решение при неотрицательных значениях правой части:
1 - x ≥ 0;
x ≤ 1;
x ∈ (-∞; 1]. (2)
3. Пересечение двух множеств:
[-3; ∞) ⋂ (-∞; 1] = [-3; 1].
Промежутку [-3; 1] принадлежат следующие целые числа: -3; -2; -1; 0; 1.
4. Проверим выполнение неравенства:
a) x = -3;
√(-3 + 3) ≤ 1 - (-3);
0 ≤ 4, верное неравенство;
b) x = -2;
√(-2 + 3) ≤ 1 - (-2);
1 ≤ 3, верное неравенство;
c) x = -1;
√(-1 + 3) ≤ 1 - (-1);
√2 ≤ 2, верное неравенство;
d) x = 0;
√(0 + 3) ≤ 1 - 0;
√3 ≤ 1, ложное неравенство;
e) x = 1;
√(1 + 3) ≤ 1 - 1;
2 ≤ 0, ложное неравенство.
1. Область допустимых значений переменной:
√(x + 3) ≤ 1 - x;
x + 3 ≥ 0;
x ≥ -3;
x ∈ [-3; ∞). (1)
2. Квадратный корень всегда больше или равен нулю, следовательно, неравенство имеет решение при неотрицательных значениях правой части:
1 - x ≥ 0;
x ≤ 1;
x ∈ (-∞; 1]. (2)
3. Пересечение двух множеств:
[-3; ∞) ⋂ (-∞; 1] = [-3; 1].
Промежутку [-3; 1] принадлежат следующие целые числа: -3; -2; -1; 0; 1.
4. Проверим выполнение неравенства:
√(x + 3) ≤ 1 - x;
a) x = -3;
√(-3 + 3) ≤ 1 - (-3);
0 ≤ 4, верное неравенство;
b) x = -2;
√(-2 + 3) ≤ 1 - (-2);
1 ≤ 3, верное неравенство;
c) x = -1;
√(-1 + 3) ≤ 1 - (-1);
√2 ≤ 2, верное неравенство;
d) x = 0;
√(0 + 3) ≤ 1 - 0;
√3 ≤ 1, ложное неравенство;
e) x = 1;
√(1 + 3) ≤ 1 - 1;
2 ≤ 0, ложное неравенство.
57269 7276
-49993 * 89
7276 65484
58208
647564
8704+х=647564 647564
х=647564-8704 - 8704
х=638860 638860
2) x *(375+25):5=1586+30414
375 400 : 5 30414
+ 25 - 40 80 + 1586
400 0 32000
х*80=32000 32000 : 80
х=32000:80 - 320 400
х=400 0
3) (631118-41873):35 *0 * 5794 +x=318106:53
0+х=318106:53 318106 :53
- 318 6002
1
-0
10
- 0
106
-106
0
0+х=6002
х=6002