Поскольку 0 и 1 можно использовать только по одному разу, значит ответ должен либо начинаться одной из последовательностей:
7150*, 5170*, 7051*, 5071*
либо заканчиваться на:
*0517, *0715, *1507, *1705
Выберем только наименьшие из этих последовательностей. Остаётся два варианта: либо число начинается с 5071, либо заканчивается на 0517. Так, имеем два возможных варианта:
5071
0517
Число 9 может стоять рядом с 0, 1 и 3. Поскольку 0 и 1 мы уже использовали выше, значит 9 должна быть быть рядом:
50719
90517
Следующей цифрой может быть только 3:
507193
390517
Далее только 6:
5071936xxx
xxx6390517
За ней только 2:
50719362xx
xx26390517
У нас осталось две цифры: 4 и 8. Обе могут быть добавлены к результирующему числу в любом порядке. Очевидно, что 84 больше, чем 48, поэтому не будем рассматривать такой вариант. Прибавим 48:
5071936248
4826390517
Итого, мы получили 2 числа, удовлетворяющих условию задачи. Выберем среди них наименьшее. Это будет число 4826390517, что и является ответом к задаче.
Определение. Назовём числом сочетаний из n по k число выбрать из множества мощностью n элементов множество мощностью k элементов, будем обозначать и определим формулой
Если нужно доказательство, пишите
Итак, приступаем к решению.
Сначала раздаем первому игроку.
Для него есть 32 карты, из которых мы выбираем 10. Тогда количество выбрать эти карты есть число сочетаний из 32 по 10.
Но можно было просто оставить
Мы уже дали 10 карт первому, поэтому осталось 32 - 10 = 22 карт.
Тогда количество раздать второму 10 карт из 22 - это
Или опять же можно было бы оставить
Третьему останется всего лишь 22 - 10 = 12 карт. Тогда точно также, число выбрать из 12 карт 10 равно
Ну хоть здесь нормальное число. Но опять же можно было и оставить
И так, для каждого из игроков есть свои варианты выбора, причем выбор другого, напрямую зависит от выбрав первого. Тогда нам необходимо перемножить все эти результаты.
4826390517
Пошаговое объяснение:
Числа 5 и 7 могут стоять только рядом с 0 или 1.
Поскольку 0 и 1 можно использовать только по одному разу, значит ответ должен либо начинаться одной из последовательностей:
7150*, 5170*, 7051*, 5071*
либо заканчиваться на:
*0517, *0715, *1507, *1705
Выберем только наименьшие из этих последовательностей. Остаётся два варианта: либо число начинается с 5071, либо заканчивается на 0517. Так, имеем два возможных варианта:
5071
0517
Число 9 может стоять рядом с 0, 1 и 3. Поскольку 0 и 1 мы уже использовали выше, значит 9 должна быть быть рядом:
50719
90517
Следующей цифрой может быть только 3:
507193
390517
Далее только 6:
5071936xxx
xxx6390517
За ней только 2:
50719362xx
xx26390517
У нас осталось две цифры: 4 и 8. Обе могут быть добавлены к результирующему числу в любом порядке. Очевидно, что 84 больше, чем 48, поэтому не будем рассматривать такой вариант. Прибавим 48:
5071936248
4826390517
Итого, мы получили 2 числа, удовлетворяющих условию задачи. Выберем среди них наименьшее. Это будет число 4826390517, что и является ответом к задаче.
или
Пошаговое объяснение:
Давайте сначала введём понятие.
Определение. Назовём числом сочетаний из n по k число выбрать из множества мощностью n элементов множество мощностью k элементов, будем обозначать и определим формулой
Если нужно доказательство, пишите
Итак, приступаем к решению.
Сначала раздаем первому игроку.
Для него есть 32 карты, из которых мы выбираем 10. Тогда количество выбрать эти карты есть число сочетаний из 32 по 10.
Но можно было просто оставить
Мы уже дали 10 карт первому, поэтому осталось 32 - 10 = 22 карт.
Тогда количество раздать второму 10 карт из 22 - это
Или опять же можно было бы оставить
Третьему останется всего лишь 22 - 10 = 12 карт. Тогда точно также, число выбрать из 12 карт 10 равно
Ну хоть здесь нормальное число. Но опять же можно было и оставить
И так, для каждого из игроков есть свои варианты выбора, причем выбор другого, напрямую зависит от выбрав первого. Тогда нам необходимо перемножить все эти результаты.
Получим
Или если в числах, то это