Исходя из признаков делимости, мои умозаключения. Т.к. крокодиллл делится на 321, значит оно будет делится и на все делители числа 321, среди которых есть 8. Число делится на 8, когда три последние цифры составляют число, делящееся на 8. В нашем случае последние три цифры одинаковые. Существует две комбинации: либо 000, либо 888, которые можно поделить на 8. 000 исключаем по условию. Соответственно Л - это 8. У числа 392 тоже 8 является делителем. НО, горилла будет делиться на 8 только, если последние цифры будут 880, а это противоречит условиям. Следовательно, оно не может быть поделено на 392.
Исходя из признаков делимости, мои умозаключения. Т.к. крокодиллл делится на 321, значит оно будет делится и на все делители числа 321, среди которых есть 8. Число делится на 8, когда три последние цифры составляют число, делящееся на 8. В нашем случае последние три цифры одинаковые. Существует две комбинации: либо 000, либо 888, которые можно поделить на 8. 000 исключаем по условию. Соответственно Л - это 8. У числа 392 тоже 8 является делителем. НО, горилла будет делиться на 8 только, если последние цифры будут 880, а это противоречит условиям. Следовательно, оно не может быть поделено на 392.
Дано:
(O;R) - описанная окружность
C=50π
АВ=ВС
ВК⊥АС
ВК=32см
Найти Р (периметр)
Решение.
1) C=50π
C=2πR
2πR=50π
R=25 см
AO=OB=R=25 см
2) BK ⊥ AC => ∠AKB=90°
3) BK=32 см
OK=BK-OB
OK=32 - 25 = 7см
3) Рассмотрим ΔAOB, в нем =>
AO=25 см
OK=7 см
∠AKO=90°
По теореме Пифагора
AK² = AO² - OK²
AK²=625-49 = 576
AK=√576 = 24 см
4) AC = 2AK= 48 см
5) В ΔABK => ∠АКВ=90°
По теореме Пифагора
AB² = AK² + BK²
AB² =576+1024 =1600
AB = √1600 = 40 см
AB=BC=40 см
6) 40+40+48=128 см - периметр ΔАВС.
Вiдповiдь: 128 см