Пошаговое объяснение:
найдем точки пересечения с ОХ
5x+14-x²=0; умножим на -1 ; x²-5x-14=0 ; x₁₋₂=(5±√(25+56)/2=(5±√81)/2=
=(5±9)/2={-2;7}
найдем отдельно площади для х≤0 х≥0 и сложим
₀ ₀
S₁=-∫(5x+14-x^2)dx=-[(5x²/2)+14x-(x³/3)]=-[(5*4/2)-14*2+8/3]=
⁻² ⁻²
=-[10-28+(8/3)]=18-2 2/3=16-2/3=15 1/3
₇ ₇
S₁=∫(5x+14-x^2)dx=[(5x²/2)+14x-(x³/3)]=
⁰ ⁰
=-[(5*49/2)+14*7-342/3]=122,5+98-114=106,5=106 1/2
S=S₁+S₂=15 1/3+106 1/2=121 5/6 кв. единиц
Пошаговое объяснение:
найдем точки пересечения с ОХ
5x+14-x²=0; умножим на -1 ; x²-5x-14=0 ; x₁₋₂=(5±√(25+56)/2=(5±√81)/2=
=(5±9)/2={-2;7}
найдем отдельно площади для х≤0 х≥0 и сложим
₀ ₀
S₁=-∫(5x+14-x^2)dx=-[(5x²/2)+14x-(x³/3)]=-[(5*4/2)-14*2+8/3]=
⁻² ⁻²
=-[10-28+(8/3)]=18-2 2/3=16-2/3=15 1/3
₇ ₇
S₁=∫(5x+14-x^2)dx=[(5x²/2)+14x-(x³/3)]=
⁰ ⁰
=-[(5*49/2)+14*7-342/3]=122,5+98-114=106,5=106 1/2
S=S₁+S₂=15 1/3+106 1/2=121 5/6 кв. единиц