Выпиши в порядке возрастания сначала единицы измерения массы,затем-времени. составь по два неравенства. объясни,как сравнивать значение величин.9ц8кг,2ц10кг, 6ц1кг,610кг,2 года,658лет, 7век, 42года, 205кг ,810дней, 98кг, 345 дней
На танец не было приглашено 1/4 дам. Значит было приглашено 3/4 дам. На танец никого не пригласили 2/7 джентльменов, значит пригласили на танец 5/7 джентльменов. Пусть количество равно x, а количество джентльменов y. Количество дам приглашенных на танец, равно количеству джентльменов которые пригласили на танец.
Значит 3/4x=5/7y. Дамножим обе части уравнения на 28. Тогда получится. 21x=20y. Поскольку у чисел 20 и 21, нет общих множетелей, единственное возможное решение данного уравнения, это x=20, y=21. Значит было 20 дам и 21 джентльмен. Значит всего на балу было 20+21=41 человек.
Число {\displaystyle \pi }\pi иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.
{\displaystyle \pi }\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.
{\displaystyle \pi }\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi к кольцу периодов.
41
Пошаговое объяснение:
На танец не было приглашено 1/4 дам. Значит было приглашено 3/4 дам. На танец никого не пригласили 2/7 джентльменов, значит пригласили на танец 5/7 джентльменов. Пусть количество равно x, а количество джентльменов y. Количество дам приглашенных на танец, равно количеству джентльменов которые пригласили на танец.
Значит 3/4x=5/7y. Дамножим обе части уравнения на 28. Тогда получится. 21x=20y. Поскольку у чисел 20 и 21, нет общих множетелей, единственное возможное решение данного уравнения, это x=20, y=21. Значит было 20 дам и 21 джентльмен. Значит всего на балу было 20+21=41 человек.
Число {\displaystyle \pi }\pi иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.
{\displaystyle \pi }\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.
{\displaystyle \pi }\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi к кольцу периодов.