В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
dontgiveupDGU
dontgiveupDGU
02.12.2020 08:22 •  Математика

Вычислить : sin ( arccos (sqrt(2)/3)+ arctg(sqrt(5))

Показать ответ
Ответ:
titovazaiceva
titovazaiceva
06.10.2020 05:43
Sin( arccos(√2/3) + arctg√5)
Арккосинус √2/3 - это угол, α, косинус которого равен √2/3.
arccos(√2/3) = α    α∈[0 ; π]
cos α = √2/3
arctg√5 = β,      β∈[ - π/2 ; π/2]
tgβ = √5
sin( arccos(√2/3) + arctg√5) = sin(α + β) = sinα·cosβ + cosα·sinβ

sinα = √(1 - cos²α) = √(1 - 2/9) = √7/3

tg²β + 1 = 1/cos²β
5 + 1 = 1/cos²β
cos²β = 1/6
cosβ = 1/√6
sinβ = √(1 - cos²β) = √(1 - 1/6) = √(5/6)

sinα·cosβ + cosα·sinβ = √7/3 · 1/√6 + √2/3 · √5/√6 =
= (√7 + √10)/(3√6)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота