ответ:Пример 1.Даны координаты вершин треугольника АВС: , , .Найти: 1) длину стороны ВС; 2) уравнение стороны ВС; 3) уравнение высоты, проведенной из вершины А; 4) длину высоты, проведенной из вершины А; 5) уравнение биссектрисы внутреннего угла ; 6) угол в радианах с точностью до 0.01.
Решение.
1). Воспользовавшись формулой: , получим
. ответ: .
2) Воспользовавшись уравнением прямой, проходящей через две точки: получим уравнение стороны ВС: , , , , ответ:
3) Высота АН перпендикулярна стороне ВС, поэтому их угловые коэффициенты и удовлетворяют условию: . Из уравнения прямой ВС следует, что , тогда .
Уравнение прямой, проходящей через точку с угловым коэффициентом k имеет вид: . Напишем уравнение прямой, проходящей через данную точку с угловым коэффициентом :
, , , , . ответ: .
4) Длину высоты АН вычисляем как расстояние от точки А до прямой ВС по формуле: ; где .
; . ответ: .
5) Пусть D – точка пересечения биссектрисы со стороной АС. Из свойства биссектрисы внутреннего угла треугольника следует, что . Но ,
ответ:Пример 1.Даны координаты вершин треугольника АВС: , , .Найти: 1) длину стороны ВС; 2) уравнение стороны ВС; 3) уравнение высоты, проведенной из вершины А; 4) длину высоты, проведенной из вершины А; 5) уравнение биссектрисы внутреннего угла ; 6) угол в радианах с точностью до 0.01.
Решение.
1). Воспользовавшись формулой: , получим
. ответ: .
2) Воспользовавшись уравнением прямой, проходящей через две точки: получим уравнение стороны ВС: , , , , ответ:
3) Высота АН перпендикулярна стороне ВС, поэтому их угловые коэффициенты и удовлетворяют условию: . Из уравнения прямой ВС следует, что , тогда .
Уравнение прямой, проходящей через точку с угловым коэффициентом k имеет вид: . Напишем уравнение прямой, проходящей через данную точку с угловым коэффициентом :
, , , , . ответ: .
4) Длину высоты АН вычисляем как расстояние от точки А до прямой ВС по формуле: ; где .
; . ответ: .
5) Пусть D – точка пересечения биссектрисы со стороной АС. Из свойства биссектрисы внутреннего угла треугольника следует, что . Но ,
Но я не полностью зделал!
Пошаговое объяснение:
ОДЗ: х>0
Решим неравенство, используя подстановку t=log3 x
t^2-3t≤4
t^2-3t-4≤0
Приравниваем к нулю t^2-3t-4=0
D = b^2 - 4ac = (-3)^2 - 4·1·(-4) = 9 + 16 = 25
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
t1 = 3 - √25/2·1 = 3 - 5/2 = -2/2 =-1
t2 = 3 + √25/2·1 = 3 + 5/2 = 8/2 =4
t є [-1;4]
Подставляем обратно:
log3 x є [-1;4]
Записываем интервал в виде 2 неравенство
log3 x≥-1
log3 x≤4
Решаем их
x≥1/3
x≤81
Находим пересечения множества решений и ОДЗ ( на фото)
х є [1/3;81], х>0
Наш ответ: х є [1/3;81].