Обозначим вершины прямого угла - Д , большего угла -М, и меньшего угла-Р, а точку пересечения высоты треугольника (h) с гипотенузой -К. тогда тпеугольники МКД и КДР подобны, причем, МК/h =h/КР⇔2,25/h=h/4, отсюда h=3см ДР²=КД²+КР²⇔ДР²=3²+4²⇒ДР=5см
Теперь опустим ⊥ из т.Д на плоскость b и обозначим т.О. Рассмотрим треугольники ДОК и ДОР ДО/КД=sin30=1/2⇒ДО/3=1/2⇒ДО=3/2=1,5 в треугольнике ДОР ДО/ДР=sinα, где α-искомая величина угла наклона ДР к плоскости b ДО/ДР= 1,5/5=sinα⇒sinα=0.3 Далее α можно определить по таблице Брадиса. α≈17°30мин
ответ: Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Итак, нам нужно сравнить:
Числа, кратные 8, но не кратные 9.
Числа, кратные 9, но не кратные 8.
Давайте к каждой из этих групп чисел прибавим числа, которые кратны 8 и еще числа, кратные 9. Получим:
1. (Кратные 8 + не кратные 9) + (кратные 8 + кратные 9) = кратные 8 + кратные 8 = 2 * (кратные 8).
2. (Кратные 9 + не кратные 8) + (кратные 8 + кратные 9) = кратные 9 + кратные 9 = 2 * (кратные 9).
Теперь нам нужно сравнить удвоенное количество чисел, кратных 8, и удвоенное количество, чисел кратных 9. Можно поделить каждую из частей на 2.
Итак, каких чисел больше:
кратных 8;
или кратных 9?
Понятно, что чисел, кратных 8, все-таки больше, чем чисел, кратных 9, так как само число 8 меньше 9 и мы берем довольно большой промежуток чисел.
Возвратившись к исходной задаче, получаем:
Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
тогда тпеугольники МКД и КДР подобны, причем,
МК/h =h/КР⇔2,25/h=h/4, отсюда h=3см
ДР²=КД²+КР²⇔ДР²=3²+4²⇒ДР=5см
Теперь опустим ⊥ из т.Д на плоскость b и обозначим т.О. Рассмотрим треугольники ДОК и ДОР
ДО/КД=sin30=1/2⇒ДО/3=1/2⇒ДО=3/2=1,5
в треугольнике ДОР ДО/ДР=sinα, где α-искомая величина угла наклона ДР к плоскости b
ДО/ДР= 1,5/5=sinα⇒sinα=0.3
Далее α можно определить по таблице Брадиса. α≈17°30мин