Вычисли. Запиши ответ обыкновенной дробью, используя символ «/». Не сокращай получившуюся дробь. 1/7c + 3/7c , 61/1000t +876/1000t , 2/6ch+1/6ch
скорость время расстояние авто х+48 км/ч был в пути всего меньше вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч
Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48 84(х+48)-84х=5,6х(х+48) 84х+48*84-84х=5,6 х^(2) +48*5.6x 5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8 7x^(2) + 336 x - 5040 = 0 x^(2) +48x-720=0 D=2304+4*720=5184=72^(2) x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)
При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы. Напомним свойства числовых неравенств. 1. Если а > b , то b < а; наоборот, если а < b, то b > а. 2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c. 3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину. 4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать. Замечание. Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным. 5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое. 6. Если а > b и m – положительное число, то m а > m b и , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ). Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный. 7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать. Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.
авто х+48 км/ч был в пути всего
меньше
вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч
Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48
84(х+48)-84х=5,6х(х+48)
84х+48*84-84х=5,6 х^(2) +48*5.6x
5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8
7x^(2) + 336 x - 5040 = 0
x^(2) +48x-720=0
D=2304+4*720=5184=72^(2)
x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста
x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)
Напомним свойства числовых неравенств.
1. Если а > b , то b < а; наоборот, если а < b, то b > а.
2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.
Замечание. Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
6. Если а > b и m – положительное число, то m а > m b и , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.