Всегда ли или только в определенных случаях прямая, которая принадлежит плоскости, параллельной другой прямой, параллельна ей (имеется в виду другой прямой)? Т. е. можно ли приходить к такому выводу, опираясь на признак параллельности прямой и плоскости? Если можно с обоснованием, заранее
Скорость поезда вышедшего со станции Шу, на 3 целых 1/2 км/ч меньше, значит 77,25-3,5 = 73,75км/ч
Оба они за 1 ч пройдут расстояние равному 77,25+73,75=151 км
Отсюда вывод: за 3 ч они пройдут расстояние 151*3=453 км
расстояние между станциями Мойынты и Шу: 453 км
Берем за x - расстояние между двумя станциями в километрах
тогда они оба расстояние равное x/3 км
Тогда уравнение будет выглядит следующим образом:
(77, 25 + (77, 25-3,5))*3 = x
Решаем уравнение:
(77,25 + 73,75) * 3 = х
77,25 + 73, 75 = х/3
151 = х/3
х=151*3=453
ответ:453 км
Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.