Вопросил некто некого учителя: «Сколько имеешь учеников у себя, так как хочу отдать тебе сына в училище». Учитель ответил: «Если ко мне придёт учеников столько же, сколько имею, и полстолька, и четвертая часть, и твой сын, тогда будет у меня 100 учеников». Сколько было у учителя учеников? составьте уравнение
Площадь одной стороны куба 9кв см,
а площадь всей поверхности куба 54кв см
Потому что на первом уровне большого куба 4 кубика и на втором столько же. Одна сторона кубика равна 3см, значит длина ребра большого куба 6см потому, что 3+3=6. Площадь же одной стороны куба 9кв см потому, что для того чтобы вычислить площадь надо длину умножить на ширину. В нашем случае 3*3. Теперь вычислим площадь всей поверхности. У одного куба 6 сторон(граней), значит 3*3+3*3+3*3+3*3+3*3+3*3=54кв см. Можно по другому 9*6=54кв см.
Надеюсь понятно объяснила)
Как доказать, что четырехугольник — параллелограмм? Для этого можно использовать определение либо один из признаков параллелограмма.
1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.
ABCD — параллелограмм, если
AB ∥ CD, AD ∥ BC.
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
это могут быть пары треугольников
1) ABC и CDA,
2) BCD и DAB,
3) AOD и COB,
4) AOB и COD.
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.