Вокружность с центром о вписан четырехугольник со взаимно перпендикулярными диагоналями. докажите, что расстояние от точки о до каждой его стороны равно половине длины противоположной стороны.
В окружность вписан четырех угольник.... но можно сформулировать и по другому - окружность описывает четырехугольник. вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. ее центр лежит на пересечении диагоналей. но поскольку диагонали у нас по условию перпендикулярны, то четырехугольник - квадрат. смотри рисунок во вложении Δ ABC - прямоугольный и равнобедренный высота OA = 1/2 диагонали AC Δ AOD - прямоугольный и равнобедренный высота OK - совпадает с биссектрисой и медианой ⇒ OK= 1/2 BC
вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. ее центр лежит на пересечении диагоналей. но поскольку диагонали у нас по условию перпендикулярны, то четырехугольник - квадрат.
смотри рисунок во вложении
Δ ABC - прямоугольный и равнобедренный
высота OA = 1/2 диагонали AC
Δ AOD - прямоугольный и равнобедренный
высота OK - совпадает с биссектрисой и медианой ⇒ OK= 1/2 BC