В два магазина привезли стулья, причем во второй магазин в 2 раза больше, чем в первый. Когда в первом магазине было продано 7 стульев, а во втором 34 стула, то в первом магазине осталось в 3 раза больше стульев, чем во втором. Сколько стульев привезли в каждый магазин изначально? Решение: Пусть в 1 магазине было х стульев, тогда во втором - 2х стульев. После продажи стульев стало: 1 магазин : (х-7) 2 магазин: (2х-34). Зная, что в 1 магазине осталось в 3 раза больше стульев, чем во втором, составим уравнение: х-7 = 3*(2х-34) х-7=6х-102 102-7=6х-х 5х=95 х=95:5 х=19 (стульев) - было в 1 магазине. 2*19=38 (стульев)- было во 2 магазине. Проверим уравнение: 19-7=3*(2*19 -34) ; 12=3*4; 12=12
ответ: 19 стульев привезли в первый магазин, 38 стульев - во второй.
Сколько стульев привезли в каждый магазин изначально?
Решение:
Пусть в 1 магазине было х стульев, тогда во втором - 2х стульев.
После продажи стульев стало:
1 магазин : (х-7)
2 магазин: (2х-34).
Зная, что в 1 магазине осталось в 3 раза больше стульев, чем во втором, составим уравнение:
х-7 = 3*(2х-34)
х-7=6х-102
102-7=6х-х
5х=95
х=95:5
х=19 (стульев) - было в 1 магазине.
2*19=38 (стульев)- было во 2 магазине.
Проверим уравнение: 19-7=3*(2*19 -34) ; 12=3*4; 12=12
ответ: 19 стульев привезли в первый магазин, 38 стульев - во второй.
а)ε= √21/5 ; A(–5;0)
a=5
ε=c/a
c=ε·a=√21
b2=a2–c2=25–21=4
О т в е т.
(x2/25)+(y2/4)=1
б)A (√80;3) ,B(4 √6 ;3 √2)
Каноническое уравнение гиперболы
(x2/a2)–(y2/b2)=1
чтобы найти а и b подставляем координаты точек А и В:
{(80/a2)–(9/b2)=1
{(96/a2)–(18/b2)=1
Умножаем первое уравнение на (–2):
{–(160/a2)+(18/b2)=–2
{(96/a2)–(18/b2)=1
Складываем
–64/a2=–1
a2=64
18/b2=(96/a2)–1
b2=36
О т в е т. (x2/64)–(y2/36)=1
в)D: y=1
если каноническое уравнение параболы имеет вид
x2=–2py, то фокус параболы
F(0;–p/2)
D: y=p/2
Значит,
p/2=1
p=2
О т в е т. x2=–4y
Пошаговое объяснение: