Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)
у - курс евро к рублю
Первая бивалютная корзина : 0,55х + 0,45у = 37,95
Вторая бивалютная корзина : 0,45х + 0,55у = 39,05 , решим как систему уравнений . Умноножим первое уравнение на (0,45 / 0,55) = 9/11 . Получим :
{ 0,45х + 9/11 * 0,45у = 9/11 * 37,95
-
{ 0,45х + 0,55у = 39,05
9/11 *0,45у - 0,55у = 9/11 * 37,95 - 39,05
0,37у - 0,55у = 31,05 - 39,05
-0,18у = - 8,0
у = 44,44 руб - курс евро к рублю , подставим значение "у" в первое уравнение : 0,55х + 0,45 * 44,44 = 37,95
0,55х = 37,95 - 0,45* 44,44
0,55х = 37,95 - 20,0
0,55х = 17,95
х = 17,95 / 0,55
х = 32,64 руб - курс доллара к рублю
Курс доллара к курса к евра по отношению к рублю равна = 32,64 / 44,44 = 0,7345
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)