Верно ли утверждение, что прямая перпендикулярна лежащим в этой плоскости: а) двум сторонам треугольника б) двум сторонам трапеции в) двум диаметрам круга.
Математическое ожидание - сумма попарных произведений значений случайной величины на вероятности, с которыми эти величины достигаются.
То есть, если значение достигается с вероятностью , значение - с вероятностью , и так далее, значение - с вероятностью , то математическое ожидание:
Математическое ожидание показывает среднее или наиболее вероятное значение случайной величины. В единичном испытании математическое ожидание равно вероятности события.
Для вычисления мат.ожидания как ожидаемого числа вопросов используем формулу:
, где - вероятность осуществления некоторого события, - число повторений.
В нашем случае, - вероятность того, что очередной вопрос не из группы "спринт", - число вопросов группы "спринт" (нас интересует сколько раз среди них встретится вопрос не группы "спринт").
Поскольку вопросов не из группы "спринт" , а общее число вопросов , то вероятность того, что очередной вопрос не из группы "спринт" равна:
Число вопросов группы "спринт":
Тогда:
Конечно, можно действовать по первой формуле.
Для этого рассмотрим возможные количества вопросов не из группы "спринт", которые могли оказаться в группе "спринт". Это количества: 0, 1, 2, ..., 17, 18.
Найдем вероятности осуществления этих возможностей. Так как общий смысл сохраняется во всех ситуациях, то рассмотрим нахождение вероятности в общем виде - найдем с какой вероятностью i вопросов не из группы "спринт" попадут в группу "спринт".
Число выбрать вопросы в группу "спринт" с учетом этого условия соответствует тому, что из 18 вопросов не группы "спринт" мы выберем некоторые i штук, а остальные (30-i) штук мы выберем из 30 вопросов группы "спринт". Итоговое число благоприятных комбинаций: .
Общее число выбрать вопросы в группу "спринт" соответствует тому, что из всех 48 вопросов мы выберем некоторые 30 штук. Общее число комбинаций: .
Тогда, ситуации, что в группе "спринт" окажется i вопросов не из группы "спринт", соответствует вероятность .
Запишем математическое ожидание как сумму попарных произведений значений на вероятность:
Можно попробовать упростить эту формулу:
Далее нужно каким-либо досчитать эту величину. Вычисления дают полученный ранее результат:
Учитывая контекст вопроса, а именно, что мат.ожидание соответствует числу вопросов, попавших в группу "спринт", запишем также округленное до целого числа значение мат.ожидания:
Приведу редко используемый в этой ситуации в надежде. что кто-нибудь другой даст и один из стандартных .
Пусть K - точка касания одной из двух касательных с окружностью. Тогда KN=\sqrt{10} - ведь уравнение окружности x²+(y-1)^2=10, центр у нее в точке N(0;1), а радиус равен корню из 10.
Далее, поскольку касательная перпендикулярна радиусу, проведенному в точку касания, угол MKN прямой, KM²=50-10=40, а тангенс угла KMN равен
Поэтому. чтобы получить касательную, нужно прямую MN с угловым коэффициентом (то есть тангенсом угла наклона) 1/7 повернуть вокруг точки M на угол arctg(1/2) в ту или другую сторону. Поскольку
Математическое ожидание - сумма попарных произведений значений случайной величины на вероятности, с которыми эти величины достигаются.
То есть, если значение достигается с вероятностью , значение - с вероятностью , и так далее, значение - с вероятностью , то математическое ожидание:
Математическое ожидание показывает среднее или наиболее вероятное значение случайной величины. В единичном испытании математическое ожидание равно вероятности события.
Для вычисления мат.ожидания как ожидаемого числа вопросов используем формулу:
, где - вероятность осуществления некоторого события, - число повторений.
В нашем случае, - вероятность того, что очередной вопрос не из группы "спринт", - число вопросов группы "спринт" (нас интересует сколько раз среди них встретится вопрос не группы "спринт").
Поскольку вопросов не из группы "спринт" , а общее число вопросов , то вероятность того, что очередной вопрос не из группы "спринт" равна:
Число вопросов группы "спринт":
Тогда:
Конечно, можно действовать по первой формуле.
Для этого рассмотрим возможные количества вопросов не из группы "спринт", которые могли оказаться в группе "спринт". Это количества: 0, 1, 2, ..., 17, 18.
Найдем вероятности осуществления этих возможностей. Так как общий смысл сохраняется во всех ситуациях, то рассмотрим нахождение вероятности в общем виде - найдем с какой вероятностью i вопросов не из группы "спринт" попадут в группу "спринт".
Число выбрать вопросы в группу "спринт" с учетом этого условия соответствует тому, что из 18 вопросов не группы "спринт" мы выберем некоторые i штук, а остальные (30-i) штук мы выберем из 30 вопросов группы "спринт". Итоговое число благоприятных комбинаций: .
Общее число выбрать вопросы в группу "спринт" соответствует тому, что из всех 48 вопросов мы выберем некоторые 30 штук. Общее число комбинаций: .
Тогда, ситуации, что в группе "спринт" окажется i вопросов не из группы "спринт", соответствует вероятность .
Запишем математическое ожидание как сумму попарных произведений значений на вероятность:
Можно попробовать упростить эту формулу:
Далее нужно каким-либо досчитать эту величину. Вычисления дают полученный ранее результат:
Учитывая контекст вопроса, а именно, что мат.ожидание соответствует числу вопросов, попавших в группу "спринт", запишем также округленное до целого числа значение мат.ожидания:
ответ:
Приведу редко используемый в этой ситуации в надежде. что кто-нибудь другой даст и один из стандартных .
Пусть K - точка касания одной из двух касательных с окружностью. Тогда KN=\sqrt{10} - ведь уравнение окружности x²+(y-1)^2=10, центр у нее в точке N(0;1), а радиус равен корню из 10.
Далее, поскольку касательная перпендикулярна радиусу, проведенному в точку касания, угол MKN прямой, KM²=50-10=40, а тангенс угла KMN равен
Поэтому. чтобы получить касательную, нужно прямую MN с угловым коэффициентом (то есть тангенсом угла наклона) 1/7 повернуть вокруг точки M на угол arctg(1/2) в ту или другую сторону. Поскольку
получаем угловые коэффициенты
Поэтому уравнения касательных -
и