В решении.
Пошаговое объяснение:
Решить уравнения:
1) 11/12= 3/4 x - 1/9
↓
11/12 = 3х/4 - 1/9
Умножить все части уравнения на 36, чтобы избавиться от дробного выражения:
3 * 11 = 9 * 3х - 4 * 1
33 = 27х - 4
-27х = -4 - 33
-27х = -37
х = -37/-27 (деление)
х = 37/27 (дробь),
2) -2 1/5 - 3x = 2 1/4 x
-11/5 - 3х = 9х/4
Умножить все части уравнения на 20, чтобы избавиться от дробного выражения:
4 * (-11) - 60х = 5 * 9х
-44 - 60х = 45х
-60х - 45х = 44
-105х = 44
х = 44/-105 (деление)
х = -44/105 (дробь).
Проверка путём подстановки вычисленных значений х в уравнения показала, что данные решения удовлетворяют данным уравнениям.
a₁=-π/4+2nπ; a₂=arctg0,5+2nπ, n∈Z
f(x)=(cosa)x²+(2sina)x+0,5(cosa-sina)
Если cosa=0 тогда f(x)=±2x±0,5⇒ cosa≠0
g(x)=(bx+c)²=b²x²+2bcx+c²
f(x)≡g(x)⇒b²=cosa; 2bc=2sina; c²=0,5(cosa-sina); cosa>0
bc=sina
(bc)²=sin²a
b²·c²=0,5cosa·(cosa-sina)
sin²a=0,5cosa·(cosa-sina)
2sin²a=cosa·(cosa-sina)
2sin²a=cos²a-cosa·sina
2sin²a/cos²a=cos²a/cos²a-cosa·sina/cos²a
2tg²a=1-tga
tga=y
2y²=1-y
2y²+y-1=0
(y+1)(2y-1)=0
y₁=-1⇒tga=-1⇒a₁=-π/4+kπ, k∈Z
y₂=0,5⇒tga=0,5⇒a₂=arctg0,5+kπ, ∈Z
cosa>0⇒k=2n
В решении.
Пошаговое объяснение:
Решить уравнения:
1) 11/12= 3/4 x - 1/9
↓
11/12 = 3х/4 - 1/9
Умножить все части уравнения на 36, чтобы избавиться от дробного выражения:
3 * 11 = 9 * 3х - 4 * 1
33 = 27х - 4
-27х = -4 - 33
-27х = -37
х = -37/-27 (деление)
х = 37/27 (дробь),
2) -2 1/5 - 3x = 2 1/4 x
↓
-11/5 - 3х = 9х/4
Умножить все части уравнения на 20, чтобы избавиться от дробного выражения:
4 * (-11) - 60х = 5 * 9х
-44 - 60х = 45х
-60х - 45х = 44
-105х = 44
х = 44/-105 (деление)
х = -44/105 (дробь).
Проверка путём подстановки вычисленных значений х в уравнения показала, что данные решения удовлетворяют данным уравнениям.
a₁=-π/4+2nπ; a₂=arctg0,5+2nπ, n∈Z
Пошаговое объяснение:
f(x)=(cosa)x²+(2sina)x+0,5(cosa-sina)
Если cosa=0 тогда f(x)=±2x±0,5⇒ cosa≠0
g(x)=(bx+c)²=b²x²+2bcx+c²
f(x)≡g(x)⇒b²=cosa; 2bc=2sina; c²=0,5(cosa-sina); cosa>0
bc=sina
(bc)²=sin²a
b²·c²=0,5cosa·(cosa-sina)
sin²a=0,5cosa·(cosa-sina)
2sin²a=cosa·(cosa-sina)
2sin²a=cos²a-cosa·sina
2sin²a/cos²a=cos²a/cos²a-cosa·sina/cos²a
2tg²a=1-tga
tga=y
2y²=1-y
2y²+y-1=0
(y+1)(2y-1)=0
y₁=-1⇒tga=-1⇒a₁=-π/4+kπ, k∈Z
y₂=0,5⇒tga=0,5⇒a₂=arctg0,5+kπ, ∈Z
cosa>0⇒k=2n