Вдву столбиках цифры первый столбик 1,2,7,9 второй столбик3, 4,5,8 нужно переставить две цифры так чтобы сумма в обоих столбцах стала одинаковая. С цифрами можно выполнять любые действия
Для удобства дадим название каждой стороне прямоугольника (см. рисунок). и распишем, чему равен периметр каждого маленького прямоугольника по часовой стрелке: p1 = 2a + 2c = 24 p2 = 2b + 2c = 28 p3 = 2b + 2d = 16 p4 = 2a + 2d = ? выразим стороны a и d из первого и третьего периметра и подставим их в периметр четвертого прямоугольника: 2a = 24 – 2c 2d = 16 – 2b p4 = 24 – 2c + 16 – 2b мы также можем выразить сторону b через второй периметр, чтобы периметр четвертого прямоугольника был выражен только через одну сторону: 2b = 28 – 2c p4 = 24 – 2c + 16 – (28 – 2c) = 24 – 2c + 16 – 28 + 2c = 24 + 16 – 28 = 12 в результате все неизвестные сократились и был найден периметр четверного прямоугольника, равный 12.
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4