ВАРИАНТ-1 1. Окружность, центр которой принадлежит биссектрисе угла, пересекает его стороны в точках и . Доказать, что . 2. Через точку , данную внутри угла (меньшего, чем развернутый), провести прямую, отрезок которой, заключенный между сторонами угла, делится в этой точке пополам.
Мы, народ Соединенных Штатов, с целью образовать более совершенный Союз, установить правосудие, гарантировать внутреннее спокойствие, обеспечить совместную оборону, содействовать всеобщему благоденствию и закрепить блага свободы за нами и потомством нашим провозглашаем и устанавливаем настоящую Конституцию для Соединенных Штатов Америки.
б) Россия - 12 декабря 1993
Мы, многонациональный народ Российской Федерации, соединенные общей судьбой на своей земле, утверждая права и свободы человека, гражданский мир и согласие, сохраняя исторически сложившееся государственное единство, исходя из общепризнанных принципов равноправия и самоопределения народов, чтя память предков, передавших нам любовь и уважение к Отечеству, веру в добро и справедливость, возрождая суверенную государственность России и утверждая незыблемость ее демократической основы, стремясь обеспечить благополучие и процветание России, исходя из ответственности за свою Родину перед нынешним и будущими поколениями, сознавая себя частью мирового сообщества, принимаем КОНСТИТУЦИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ.
в) Германия - 23 мая 1949
Сознавая свою ответственность перед Богом и людьми, воодушевленный стремлением служить делу мира во всем мире в качестве равноправного союзника в объединенной Европе, германский народ принял в силу своей конституирующей власти настоящий Основной закон.
г) Швейцария - 18 апреля 1999
Швейцарский народ и кантоны,
чувствуя ответственность перед Творением,
стремясь обновить Союз, чтобы упрочить свободу и демократию, независимость и мир в духе солидарности и открытости миру,
проявляя волю жить, взаимно учитывая и уважая их многообразие в единстве,
в осознании совместных достижений и ответственности перед будущими поколениями,
будучи уверены, что свободен лишь тот, кто использует свою свободу, и что сила народа измеряется благом слабых, дают себе следующую Конституцию
е) Китай - 1982
Китай – одной из государств мира с самой древней историей.
ж) Япония - 3 мая 1947 г.
Мы, японский народ, действуя через посредство наших должным образом избранных представителей в Парламенте и исполненные решимости обеспечить для себя и для своих потомков плоды мирного сотрудничества со всеми нациями и благословение свободы для всей нашей страны, исполненные решимости не допустить ужасов новой войны в результате действий правительств, провозглашаем, что народ облечен суверенной властью, и устанавливаем настоящую Конституцию
Пошаговое объяснение:
Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды. Нам потребуется таблица разложений функций в степенные ряды, которую можно раздобыть на странице Математические формулы и таблицы. Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.
На уроке Определенный интеграл. Как вычислить площадь фигуры? речь шла о том, что определенный интеграл – это площадь. Но в некоторых случаях интеграл является очень трудным или неберущимся, поэтому соответствующую площадь в большинстве случаев можно вычислить только приближенно.
Например: вычислить определенный интеграл . Такой интеграл является неберущимся, но аналитически и геометрически всё хорошо:
Приближенное вычисление определенного интеграла с разложения подынтегральной функции в ряд
Мы видим, что подынтегральная функция непрерывна на отрезке , а значит, площадь существует, и определенный интеграл численно равен заштрихованной площади. Беда только в том, что данную площадь можно вычислить лишь приближенно с определенной точностью. На основании вышеизложенных фактов и появилась типовая задача курса высшей математики.
Пример 1
Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд Маклорена, с точностью до 0,001
Решение: Идея метода состоит в том, чтобы заменить подынтегральную функцию соответствующим степенным рядом (если он, конечно, сходится к ней на промежутке интегрирования).
Поэтому на первом этапе нужно разложить подынтегральную функцию в ряд Маклорена. Эту рас на практике задачу мы очень подробно рассмотрели на уроке Разложение функций в степенные ряды. Кстати, рекомендую всем прочитать, поскольку некоторые вещи, о которых сейчас пойдет разговор, могут показаться малопонятными.
Используем табличное разложение:
В данном случае
Обратите внимание, как я записал ряд. Специфика рассматриваемого задания требует записывать только несколько первых членов ряда. Мы не пишем общий член ряда , он здесь ни к чему.
Чем больше членов ряда мы рассматриваем – тем лучше будет точность. Сколько слагаемых рассматривать? Из практики могу сказать, что в большинстве случаев для достижения точности 0,001 достаточно записать первые 4 члена ряда. Иногда требуется меньше. А иногда больше. Если в практическом примере их не хватило, то придётся переписывать всё заново =( Поэтому целесообразно провести предварительный черновой анализ или перестраховаться, изначально записав побольше членов (собственно, такой же совет как и для приближенного вычисления значения функции с ряда).
Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.
Теперь второй этап решения:
Сначала меняем подынтегральную функцию на полученный степенной ряд:
Почему это вообще можно сделать? Данный факт пояснялся ещё на уроке о разложении функций в степенные ряды – график бесконечного многочлена в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .
На следующем шаге максимально упрощаем каждое слагаемое:
Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.
После упрощений почленно интегрируем всю начинку – напоминаю, что эта замечательная возможность обусловлена равномерной сходимостью степенных рядов:
Интегралы здесь на этом я не останавливаюсь.
На завершающем этапе вспоминаем школьную формулу Ньютона-Лейбница . Для тех, кто не смог устоять перед Ньютоном и Лейбницем, есть урок Определенные интегралы. Примеры решений.
Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:
Сколько членов ряда нужно взять для окончательных вычислений? Если сходящийся ряд знакочередуется, то абсолютная погрешность вычислений по модулю не превосходит последнего отброшенного члена ряда. В нашем случае уже третий член ряда меньше требуемой точности 0,001, и поэтому если мы его отбросим, то заведомо ошибёмся не более чем на 0,000972 (осознайте, почему!). Таким образом, для окончательного расчёта достаточно первых двух членов: .
ответ: , с точностью до 0,001
Что это получилось за число с геометрической точки зрения? – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).
Пример 2
Вычислить приближенно определенный интеберущимся, правда, решение не самое