Вариант 1 1. м и к соответственно середины сторон ав и вс треугольника авс. найдите мк, если ас = 7см. 2. гипотенуза прямоугольного треугольника равна 5см, а высота, проведенная к ней, равна 2см. найдите катеты и отрезки, на которые эта гипотенуза делится высотой. 3. в прямоугольном треугольнике с
углом 450 и гипотенузой 8см проведены средние линии. найдите периметр треугольника, образованного средними линиями.
Пошаговое объяснение:
1) M, K - середины сторон ⇒ MK - средняя линия, MK = 1/2AC = 1/2 · 7 = 3,5 см
2) по свойствам высоты, проведённой на гипотенузу; ⇒ 4= x · (5 - x);
x² - 5x + 4 = 0 по теореме Виета: x₁ + x₂ = 5; x₁x₂ = 4 ⇒ x₁ = 1; x₂ = 4 ⇒ AH = 4; HB = 1; AC = √16+ 4 = √20 = 2√5; BC = √1+ 4 = √5. Дан ΔABC - прямоугольный; AC, BC - катеты; отрезки гипотенузы - AH; HB
ответ: 4; 1; √5; 2√5
3) Дан ΔABC; ∠C = 90°; ∠A = ∠B = 45° ⇒ ΔABC - равнобедренный ⇒ AC = BC = x; 2x² = 64; x = 4√2 = AC = BC;
MK = KP = 1/2 AC = 1/2 BC = 2√2 см; MP = 1/2 AB = 4см
MK, KP, MP - среднии линии
ответ: 4 см, 2√2 см; 2√2√ см