В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
sofa286
sofa286
25.01.2020 06:59 •  Математика

Візьміть у дужки два останні доданки поставивши перед дужками знак

Показать ответ
Ответ:
Gfdsahjk
Gfdsahjk
28.10.2020 01:43
Первый признак равенства треугольников

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Рассмотрим два треугольника ABC и A1B1C1.
Пусть в этих треугольниках равны стороны AB и A1B1,
BC и B1C1,
а угол ABC равен углу A1B1C1.
Тогда треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы угол A1B1C1 совпал с углом ABC.
При этом можно расположить треугольник A1B1C1 так, чтобы сторона А1В1 совпала со стороной АВ, а сторона B1С1 - со стороной BС. (В случае необходимости вместо треугольника A1B1C1 можно рассматривать равный ему "перевернутый" треугольник, т. е. треугольник, симметричный A1B1C1 относительно произвольной прямой .)
Тогда треугольники совпадут полностью, поскольку совпадут все их вершины.

Второй признак равенства треугольников

Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Доказательство. Пусть в треугольниках АВС и А 1 В 1 С 1 имеют место равенства
AB= A1B1,
ÐBAC = ÐB1A1C1,
ÐАВС= ÐА1В1С1.
Поступим так же, как и в предыдущем случае. Наложим треугольник А1В1С1 на треугольник АВС так, чтобы совпали стороны AB и A1B1 и прилегающие к ним углы. Как и в предыдущем случае, при необходимости треугольник А1В1С1 можно "перевернуть обратной стороной".
Тогда треугольники совпадут полностью. Значит, они равны.

Третий признак равенства треугольников

Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Доказательство. Пусть для треугольников ABC и A1B1C1
имеют место равенства АВ = А1В1,
ВС = В1С1,
СА = С1А1.
Перенесем треугольник А1В1С1 так, чтобы сторона А1В1 совпала со стороной АВ, при этом должны совпасть вершины A1 и A, B1 и B.
Рассмотрим две окружности с центрами в A и B и радиусами соответственно AC и BC.
Эти окружности пересекаются в двух симметричных относительно AB точках: C и C2. Значит, точка C1 после переноса указанным образом треугольника A1B1C1 должна совпасть либо с точкой C, либо с точкой C2.
В обоих случаях это будет означать равенство треугольников ABC и A1B1C1, поскольку треугольники ABC и ABC2 равны (эти треугольники симметричны относительно прямой AB.)
0,0(0 оценок)
Ответ:
tanea201111
tanea201111
01.09.2022 07:29

Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).

Решение находим с калькулятора.

Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).

Координаты векторов находим по формуле:

X = xj - xi; Y = yj - yi; Z = zj - zi

здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;

Например, для вектора AB

X = x2 - x1; Y = y2 - y1; Z = z2 - z1

X = 5-2; Y = 5-(-1); Z = 4-1

AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).

Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:

Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18

(Если что это как пример так ты сможешь сделать это одно и тоже почти!)

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота