Для нахождения скоростей течения реки и рассматриваемого теплохода будем использовать формулы: Vтеч = 0,5 * (V1 - V2) = 0,5 * (S1 / t1 - S2 / t2) / 2 и Vтепл = 0,5 * (V1 + V2) = 0,5 * (S1 / t1 + S2 / t2) / 2.
Значения переменных: S1 — путь по течению (S1 = 40 км); t1 — продолжительность движения по течению (t1 = 2 ч); S2 — путь против течения (S2 = 45 км); t2 — продолжительность движения против течения (t2 = 3 ч).
50 км/ч скорость мотоциклиста
Пошаговое объяснение:
Пусть скорость мотоциклиста = х км/ч
Тогда скорость велосипедиста = х-30 км/ч
Весь путь от А до Б = 1 (1 целая часть)
Тогда: 1 - 2/7 = 5/7 части пути до встречи проехал мотоциклист
Мотоциклист проехал 5/7 пути со скоростью х км/ч
Велосипедист проехал 2/7 пути со скоростью х-30 км/ч
Время они затратили одно и то же, тогда :
5/7 : х = 2/7 : (х - 30)
5/7*(х-30) = 2/7х
5/7х - 150/7 = 2/7х
5/7х - 2/7х = 150/7
3/7х = 150/7
х = 150/7 : 3/7 = 150/7 * 7/3
х = 50 (км/ч) скорость мотоциклиста
Для нахождения скоростей течения реки и рассматриваемого теплохода будем использовать формулы: Vтеч = 0,5 * (V1 - V2) = 0,5 * (S1 / t1 - S2 / t2) / 2 и Vтепл = 0,5 * (V1 + V2) = 0,5 * (S1 / t1 + S2 / t2) / 2.
Значения переменных: S1 — путь по течению (S1 = 40 км); t1 — продолжительность движения по течению (t1 = 2 ч); S2 — путь против течения (S2 = 45 км); t2 — продолжительность движения против течения (t2 = 3 ч).
Расчет: а) Скорость течения: Vтеч = 0,5 * (40 / 2 - 45 / 3) = 2,5 км/ч;
б) Скорость теплохода: Vтепл = 0,5 * (40 / 2 + 45 / 3) = 17,5 км/ч.
ответ: Скорость течения составляет 2,5 км/ч; скорость теплохода — 17,5 км/ч.
Пошаговое объяснение: