В ряд росло 300 кустов смородины, причем среди любых трех кустов, стоящих подряд, хотя бы на одном были спелые черные ягоды. После того, как Толя покрасил ягоды нескольких кустов в зеленый цвет, оказалось, что среди любых четырех растущих подряд кустов осталось не более одного с черными ягодами. Докажите, что Толя покрасил ягоды не менее 50 кустов.
ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.
Данную задачу будем решать с уравнения.
1. Обозначим через х первоначальную скорость автогонщика.
2. Найдем скорость автогонщика после поломки.
х + 20 км/ч.
3. Определим, какое время затратил автогонщик на последние 120 километров.
120 км : (х + 20) км/ч = 120/(х + 20) ч.
4. Найдем, какое время затратил бы автогонщик на последние 120 километров, если бы двигался с первоначальной скоростью.
120 км : х км/ч = 120/х ч.
5. Составим и решим уравнение.
1/15 = 120/x - 120/(x + 20);
1 = 1800/x - 1800/(x + 20);
x2 + 20x - 36000 = 0;
D = 400 + 144000 = 144400;
Уравнение имеет 2 корня х = 180 и х = -200.
Скорость автогонщика не может быть меньше нуля, подходит 1 корень х = 180.
ответ: Первоначальная скорость автогонщика 180 км/ч.