В поликлинике работают 80 человек. Из них 5 человек – администрация, 10 – технический персонал, 10 – педиатры, половина – врачи других специальностей, и 15 человек – статисты. Какова вероятность того, что наудачу выбранное лицо окажется статистом или человеком из администрации
1) 1-й и 2-й шары черные
Вероятность вынуть 1-й шар черным 4/10. Тогда останется 9 шаров, 3 из которых черные. Вероятность вынуть 2-й шар черным 3/9. Тогда останется 8 шаров, 2 из которых черные. Вероятность вынуть 3-й шар белым 6/8.
4/10*3/9*6/8=0,1 - вероятность вынуть 1-й и 2-й шары черными.
2) 2-й и 3-й шары черные
6/10*4/9*3/8=0,1 - вероятность вынуть 2-й и 3-й шары черными
3) 1-й и 3-й шары черные
4/10*6/9*3/8=0,1 - вероятность вынуть 1-й и 3-й шары черными
0,1+0,1+0,1=0,3 - вероятность вынуть два черных шара из трех
ответ: 0,3
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)