возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
2) становится четной функцией y после замены y = x - a, значит, если ваше уравнение имеет ровно один корень, то он равен a.
3) строго вогнута (пузиком вверх) как сумма функций, тем же свойством, следовательно, с учетом 2), строго возрастает [0, a] и строго убывает на [a, 2a]
отсюда ваше уравнение имеет единственный корень тогда и только тогда, когда a - корень уравнения. подставляем x = a в уравнение, получаем 2sqrt(a) = a, откуда a = 0 или a = 4. оба значения нам
ответ:
пошаговое объяснение:
возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
p.s.: где достал(а)? какой город? )
подробнее - на -
ответ:
левая часть:
1) определена на [0, 2a], a > = 0
2) становится четной функцией y после замены y = x - a, значит, если ваше уравнение имеет ровно один корень, то он равен a.
3) строго вогнута (пузиком вверх) как сумма функций, тем же свойством, следовательно, с учетом 2), строго возрастает [0, a] и строго убывает на [a, 2a]
отсюда ваше уравнение имеет единственный корень тогда и только тогда, когда a - корень уравнения. подставляем x = a в уравнение, получаем 2sqrt(a) = a, откуда a = 0 или a = 4. оба значения нам
пошаговое объяснение:
ps. и вот вам поиграть -