В мастерской собрана статистика о числе заказов в месяц: 38, 20, 15, 18, 22, 25, 10, 15, 30, 32, 28, 35. Составьте интервальный ряд, и найдите среднее интервального ряда. На сколько среднее интервального ряда отличается от среднего исходного ряда?
Рассмотрим произведение чисел 24⋅73=1752.Один из множителей в этом произведении делится на 3, т.е. 24:3.Можно убедиться, что и всё произведение делится на 3, т.е. 1752:3=584. В произведении 25⋅58=1450 множитель 25 делится на 5.Также можно сделать вывод, что всё произведение делится на 5, т.е. 1450:5=290. Итак, признак делимости произведения:если хотя бы один из множителей делится на некоторое число, то и произведение делится на это число.Значит, если a делится на некоторое число с, то и ab также делится на это число с.Пример:Рассмотрим сумму чисел 12 и 21, т.е. (12+21).В этой сумме каждое из слагаемых делится на 3. Проверяя делимость суммы на 3, получим, что сумма 33 тоже делится на 3.Итак, признаки делимости суммы и разности чисел: Свойство 1.Если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число, т.е.,если a делится на b, и c делится на b, то (a+c) делится на b.Свойство 2.Если одно слагаемое делится на некоторое число, а другое слагаемое не делится на это число, то и вся сумма не делится на это число, т.е.,если a делится на b, а c не делится на b, то (a+c) не делится на b.Пример:12 делится на 3, а 22 не делится на 3, то (12+22) не делится на 3. Свойство 3.Если одно слагаемое делится на некоторое число и сумма делится на это же число, то другое слагаемое тоже делится на это число, т.е.,если a делится на b, и (a+c) делится на b, то c делится на b.Пример:12 делится на 3 и (12+21) делится на 3, то 21 делится на 3.Свойство 4.Если одно число делится на некоторое другое число, которое делится на третье число, то первое число делится на третье число, т.е.,если a делится на c, и c делится на b, то a делится на b.Пример:48 делится на 12, и 12 делится на 3, то 48 делится на 3.Свойство 5.Если и уменьшаемое, и вычитаемое делятся на некоторое число, то и разность делится на это число.Пример:Разность (35−20) делится на 5, т.к. 35 делится на 5, и 20 делится на 5.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8