Уравнение №1.
x + 5/7 = -3/8 * 1 1/3
Выполним умножение в правой части уравнения(не забудь 1 1/3 перевести в неправильную дробь).
Получим:
x + 5/7 = -1/2
Чтобы найти неизвестное слагаемое, из суммы вычитаем известное слагаемое.
x = -1/2 - 5/7
Приводим дроби к общему знаменателю 14.
x = -7/14 - 10/14
x = -17/14
x = -1 3/14
Уравнение №2.
y - 7/12 = 3 1/2 * (-4/7)
И опять же выполним умножение справа.
y - 7/12 = -2
Чтобы найти неизвестное уменьшаемое, надо разность сложить с вычитаемым.
y = -2 + 7/12
Приведем дроби к общему знаменателю 12.
y = -24/12 + 7/12
y = -17/12 = - 1 5/12
Уравнение №3.
(- 6 2/3) * (-1 1/5) + x = -0,5
Теперь умножаем дроби слева.
Так как минус на минус дает плюс, мы имеем право сделать такую запись:
20/3 * 6/5 + x = -0,5
Перемножив дроби, получили хорошее уравнение:
8 + x = -0,5
Опять же, чтобы найти неизвестное слагаемое, из суммы вычтем известное слагаемое.
x = -0,5 - 8
x = -8,5
Уравнение №4.
Тут мы перемножим дроби и получим:
-3/10 - y = 15/4
И опять же, чтобы найти неизвестное вычитаемое, мы из разности вычтем уменьшаемое.
Получаем:
y = 15/4 -(-3/10)
y = 15/4 + 3/10
y = 75/20 + 6/20
y = 81/20
АВ пересекается с прямой в точке О.
Перпендикуляр из точки А к прямой: АН=10,2
Перпендикуляр из точки В к прямой: ВК=4,8
Прямоугольные ΔАОН и ΔВОС подобны по 2 углам (углы АОН и ВОС равны как вертикальные, углы АНО и ВСО прямые), значит
АН/ВС=АО/ВО
АО/ВО=10,2/4,8=17/8
АО=17ВО/8
АВ=АО+ВО=17ВО/8+ВО=25ВО/8
Середина АС=СВ=АВ/2=25ВО/16
АО=АС+СО
СО=АО-АС=17ВО/8-25ВО/16=9ВО/16
Расстояние от С до прямой - это перпендикуляр СМ.
Прямоугольные ΔАОН и ΔСОМ подобны по 2 углам (углы АОН и СОМ совпадают, углы АНО и СМО прямые), значит
АН/СМ=АО/СО
СМ=АН*СО/АО=(10,2*9ВО/16) / 17ВО/8=2,7
ответ: 2,7см
Уравнение №1.
x + 5/7 = -3/8 * 1 1/3
Выполним умножение в правой части уравнения(не забудь 1 1/3 перевести в неправильную дробь).
Получим:
x + 5/7 = -1/2
Чтобы найти неизвестное слагаемое, из суммы вычитаем известное слагаемое.
x = -1/2 - 5/7
Приводим дроби к общему знаменателю 14.
x = -7/14 - 10/14
x = -17/14
x = -1 3/14
Уравнение №2.
y - 7/12 = 3 1/2 * (-4/7)
И опять же выполним умножение справа.
y - 7/12 = -2
Чтобы найти неизвестное уменьшаемое, надо разность сложить с вычитаемым.
y = -2 + 7/12
Приведем дроби к общему знаменателю 12.
y = -24/12 + 7/12
y = -17/12 = - 1 5/12
Уравнение №3.
(- 6 2/3) * (-1 1/5) + x = -0,5
Теперь умножаем дроби слева.
Так как минус на минус дает плюс, мы имеем право сделать такую запись:
20/3 * 6/5 + x = -0,5
Перемножив дроби, получили хорошее уравнение:
8 + x = -0,5
Опять же, чтобы найти неизвестное слагаемое, из суммы вычтем известное слагаемое.
x = -0,5 - 8
x = -8,5
Уравнение №4.
Тут мы перемножим дроби и получим:
-3/10 - y = 15/4
И опять же, чтобы найти неизвестное вычитаемое, мы из разности вычтем уменьшаемое.
Получаем:
y = 15/4 -(-3/10)
y = 15/4 + 3/10
y = 75/20 + 6/20
y = 81/20
АВ пересекается с прямой в точке О.
Перпендикуляр из точки А к прямой: АН=10,2
Перпендикуляр из точки В к прямой: ВК=4,8
Прямоугольные ΔАОН и ΔВОС подобны по 2 углам (углы АОН и ВОС равны как вертикальные, углы АНО и ВСО прямые), значит
АН/ВС=АО/ВО
АО/ВО=10,2/4,8=17/8
АО=17ВО/8
АВ=АО+ВО=17ВО/8+ВО=25ВО/8
Середина АС=СВ=АВ/2=25ВО/16
АО=АС+СО
СО=АО-АС=17ВО/8-25ВО/16=9ВО/16
Расстояние от С до прямой - это перпендикуляр СМ.
Прямоугольные ΔАОН и ΔСОМ подобны по 2 углам (углы АОН и СОМ совпадают, углы АНО и СМО прямые), значит
АН/СМ=АО/СО
СМ=АН*СО/АО=(10,2*9ВО/16) / 17ВО/8=2,7
ответ: 2,7см