УМАЛЯЮ ТЬ
Побудувати фігуру по точках:
1) (-6; -1) 15) (0; -8) 29) (-12; -11) 2) (-6; 1) 16) (2; -8) 30) (-13; -14) 3) (-4; 2) 17) (3; -7) 31) (-10; -14) 4) (-3; 2) 18) (1; -5) 32) (-10; -13) 5) (0; 1) 19) (0; -5) 33) (-9; -13) 6) (4; 1) 20) (-1; -4) 34) (-10; -9) 7) (6; 2) 21) (-2; -6) 35) (-5; -9) 8) (8; 0) 22) (-5; -4) 36) (-5; -15) 9) (8; -4) 23) (-6; -1) 37) (-2; -15) 10) (5; -6) 24) (-10; -2) 38) (-2; -10) 11) (4; -4) 25) (-13; -4) 39) (1; -11) 12) (4; -8) 26) (-14; -7) 40) (-2; -13) 13) (3; -9) 27) (-15; -8) 41) (0; -15) 14) (0; -9) 28) (-13; -7) 42) (2; -11) 43) (2; -9)
ответ:Когда множества A и B конечны и содержат небольшое число элементов, найти их декартово произведение несложно. А если множества бесконечны? В математике нашли выход из этой ситуации. Наглядное изображение декартова произведения двух числовых множеств можно получить при координатной плоскости. Прямоугольная система координат позволяет каждой точке плоскости поставить в соответствие единственную пару действительных чисел – координаты этой точки. Понятие координат точек на прямой и на плоскости было впервые введено в геометрию французским ученым и философом Рене Декартом в XVII веке. Это событие явилось началом новой эры в математике – эры рождения и развития понятий функции и геометрического преобразования. По имени Рене Декарта прямоугольные координаты на плоскости называют еще декартовыми.
Но как связано с именем Декарта, жившего в XVII веке, понятие декартова произведения множеств, введенное в математику в конце XIXвека? Чтобы ответить на этот во выясним сначала, как используют прямоугольную систему координат для наглядного представления декартова произведения двух числовых множеств.
Пусть А и В – числовые множества. Тогда элементами декартова произведения этих множеств будут упорядоченные пары чисел. Изобразив каждую пару чисел точкой на координатной плоскости, получим фигуру, которая и будет наглядно представлять декартово произведение множеств А и В.
Изобразим на координатной плоскости декартово произведение множеств А и В, если:
1) А = {1, 2, 3}, B = {3, 5};
2) A = {1, 2, 3}, B = [3, 5];
3) A = [1, 3], B = [3, 5];
4) A = R, B = [3, 5];
5) A = R, B = R.
В случае 1 данные множества конечны и содержат небольшое число элементов, поэтому можно перечислить все элементы их декартова произведения: А × В = {(1; 3), (1; 5), (2; 3), (2; 5), (3; 3), (3; 5)}.
Построим оси координат и на оси Ox отметим элементы множества А, а на оси - элементы множества В. Затем изобразим каждую пару чисел из множества А × В точкой на координатной плоскости. Полученная фигура из шести точек и будет наглядно представлять декартово произведение множеств А и В (рис. 1).
В случае 2 перечислить все элементы декартова произведения множеств невозможно, поскольку множество В бесконечное. Но можно представить процесс образования этого декартова произведения: в каждой паре первая компонента либо 1, либо 2, либо 3, а вторая компонента – действительное число из промежутка [3; 5]. Все пары, первая компонента которых есть число 1, а вторая пробегает значения от 3 до 5 включительно, изображаются точками первого отрезка. Аналогично строятся два других отрезка
Пошаговое объяснение:
делала а вы а вот в таком же формате нужно сделать чтобы я шла туда не знаю они не хотят платить за это время я нахожусь на почту же в приложении в геометрии и в геометрии у
Пошаговое объяснение:
не тебя есть какие-то пожелания не нужно на почту свою жизнь в группу челиков как ты кушаешь в геометрии нечего не могу найти у меня есть несколько предложений не могу зайти в личный телефон и адрес райымбека не могу зайти в школе на заказ в работу не было возможности отправить личное мнение не знаю как у нас в наличии и по поводу видео с