1. При вычисления второй стороны прямоугольника видим, что в сечении получается удвоенный "египетский" треугольник с катетами 6 и 8 и гипотенузой 10 см. Радиус цилиндра R=8., высота = 6 см. Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³ ОТВЕТ: 384π см³ 2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м Угол между сторонами α= 60 град. Используем формулу S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м² Высота призмы H = S/a = √3/2 м² Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³ ОТВЕТ: 1 1/2 м³
Это называется характерные интервалы: увеличенная секунда (ув.2) строится на vi ступени лада и разрешается в сторону расширения поступенным движением обоих звуков в чистую кварту на v ступени.уменьшенная септима (ум.7) строится на vii ступени и разрешается в сторону сужения поступенным движением обоих звуков в чистую квинту на i ступени.итак, в фа миноре ув2- ре бемоль - ми бекар- разрешение в кварту до-фа ( ми бекар потому что эти интервалы в гармоническом ладу, где 7 ступень повышена)ум7- ми бекар-ре бемоль-разрешение-фа-до.успехов!
Радиус цилиндра R=8., высота = 6 см.
Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³
ОТВЕТ: 384π см³
2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м
Угол между сторонами α= 60 град.
Используем формулу
S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м²
Высота призмы H = S/a = √3/2 м²
Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³
ОТВЕТ: 1 1/2 м³