TU HI неше шар бар? Мұндағы х
103. Ертедегі есеп.
сатып алатын ат неше рубль?
Тақырыптың түйіні.
саны алғашқыдан аз болатындай етіп түрлендіру.
Қосындыны кли
Косудың ауыстырымдылық және
терімділік қасиеттерін
дауга болады,
Көбейтудің пайдаланып,
Мысалы,
2+7а +8=107а
Көбейтіндіні ыка -
дауға болады,
Мысалы, 35х +2=30)
50
ді, ал 20 ц карабидай сатса, 110 рубль артык, калам. Муу
,
разложим на множители: 12=2*2*3 и 32=2*2*2*2*2
б) 14 и 42 наибольший общий делитель 14 (14:14=1 и 42:14=3)
разложим на множители:
14=2*7 и 42=2*3*7
в) 68 и 102 наибольший делитель 34 (68:34=2 102:34=3)
разложим на множители:
68= 2*2*17 и 102=2*3*17
г) 480 и 669 наибольший общий делитель 3 (480:3=160 и 669:3=223)
разложим на множители:
480=2*2*2*2*2*3*5 669=3*223
д) 23 и 96 и 112 наибольший общий делитель для этих 3-х чисел 1 (число 23 можно разложить только на множители 1 и 23, 96 и 112 на 23 не делятся)
разложим на множители:
23=23*1 и 96=2*2*2*2*2*3 и 112=2*2*2*2*7
для чисел 96 и 112 - наибольший делитель 16 (96:16=6, 112:16=7)
е) 21 и 126 и 252 наибольший общий делитель 21 (21:21=1, 126:21=6, 252:21=12)
разложим на множители:
21=7*3 и 126=2*3*3*7 и 252=2*3*3*7
ответ:
пошаговое объяснение:
x^2+3x+2< =0
(x+1)(x+2)< =0
x € [-2; -1]
нам надо, чтобы этот отрезок попал целиком внутрь промежутка - решения 2 неравенства.
x^2 + 2(2a+1)x + (4a^2-3) < 0
d/4 = (2a+1)^2 - (4a^2-3) = 4a^2+4a+1-4a^2+3 = 4a+4
если это неравенство имеет два корня, то d/4 > 0
a > -1
x1 = -2a-1-√(4a+4) < -2
x2 = -2a-1+√(4a+4) > -1
тогда решение 1 неравенства [-2; -1] целиком находится внутри решения 2 неравенства [x1; x2].
{ -√(4a+4) = -2√(a+1) < = 2a-1
{ √(4a+4) = 2√(a+1) > = 2a
из 1 неравенства
2√(a+1) > = 1-2a
4(a+1) > = 1-4a+4a^2
4a^2-8a-3 < = 0
d/4 = 4^2+4*3=16+12=28=(2√7)^2
a1=(4-2√7)/4=1-√7/2 ~ -0,323
a2=(4+2√7)/4=1+√7/2 ~ 2,323
a € [1-√7/2; 1+√7/2]
из 2 неравенства
а+1 > = a^2
a^2-a-1 < = 0
d=1+4=5
a1 = (1-√5)/2 ~ -0,618
a2 = (1+√5)/2 ~ 1,618
a € [(1-√5)/2; (1+√5)/2]
ответ: a € [1-√7/2; (1+√5)/2]