В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Irina12345678901
Irina12345678901
14.12.2022 10:36 •  Математика

ТРУБЫ ГОРЯТ РЕШИТЕ ТРУБЫ ГОРЯТ РЕШИТЕ

Показать ответ
Ответ:
LiveRiot
LiveRiot
15.10.2020 11:02

a)

xy'' = y'

z(y) = y'

x(z(y))' = z(y)\\\frac{(z(y))'}{z(y)} = \frac{1}{x}\\\int {\frac{\frac{dz(y)}{dx}}{z(y)}} \, dx = \int {\frac{1}{x}} \, dx\\\int {\frac{1}{z(y)}} \, dz(y) = \int {\frac{1}{x}} \, dx\\\ln z(y) = \ln x + c_0 \\\\z(y) = e^{c_0} x = 2c_1 x, \qquad (e^{c_0} = 2c_1)\\y' = 2c_1 x\\\int dy = \int 2c_1x \, dx\\y = c_1 x^2 + c_2

b)

y'' = \frac{1}{4\sqrt{y}}

z(y) = y', \quad y'' = (z(y))' = z'(y) y' = z' z

\frac{dz}{dy} z = \frac{1}{4\sqrt{y}}\\\int {z} \, dz = \int {\frac{1}{4\sqrt{y}}} \, dy \\\frac{z^2}{2} = \frac14 2\sqrt{y} + c_0\\z = \pm \sqrt{\sqrt{y} + c_0}\\y' = \pm \sqrt{\sqrt{y} + c_0}\\\int \frac{1}{\sqrt{\sqrt{y} + c_0}} \, dy = \int dx\\x = \frac43 (\sqrt{y} - 2c_0) \sqrt{c_0 + \sqrt{y}}

Тут явно y не выразить.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота