Три друга делили 120 солдатиков. Сначала Султан дал Даурену и Талгату
столько солдатиков, сколько у них было. Затем Даурен дал Талгату и Султану
столько, сколько у них стало. И наконец, Талгат дал Султану и Даурену столько,
сколько у них к этому моменту имелось. В результате всем досталось поровну.
Сколько солдатиков было у каждого в начале?
ответ: 4 кролика
1) Пусть в 1-ой клетке сидит 1 кролик. У него или 3 или 7 соседей.
Если у него 7 соседей, то во 2-ой клетке будет 7 кроликов.
Но в 3-ей клетке тоже сидит хотя бы 1 кролик.
Тогда у каждого из этих 7 кроликов будет хотя бы 8 соседей, что невозможно.
Значит, во 2-ой клетке сидит 3 кролика, и у каждого из них уже есть 3 соседа: 2 в своей клетке и 1 в 1-ой клетке.
Чтобы у них было по 7 соседей, в 3-ей клетке должно быть 4 кролика.
В 4-ой клетке должен быть 1 кролик, а в 5-ой 3 кролика.
ответ 1: 4 кролика.
2) Пусть в 1-ой клетке сидят 2 кролика. У них или 3 или 7 соседей.
Если у них 7 соседей, то во 2 клетке сидят 6 кроликов.
Но в 3-ей клетке тоже должен сидеть хотя бы 1 кролик.
Тогда у каждого из этих 6 будет 8 соседей, что невозможно.
Значит, у 2 кроликов в 1-ой клетке по 3 соседа у каждого.
То есть во 2-ой клетке сидят 2 кролика, а в 3-ей клетке 4.
Таким образом, во 2 клетке у каждого 2+1+4=7 соседей.
А в 4-ой клетке сидят опять 2 кролика, и в 3-ей клетке у каждого кролика 2+3+2=7 соседей.
ответ 2: 4 кролика.
3) Пусть в 1-ой клетке сидят 3 кролика.
Тогда во 2-ой клетке будет или 1 кролик (в 1-ой клетке у каждого по 3 соседа), или 5 кроликов (по 7 соседей).
Если во 2-ой клетке 1 кролик, то в 3-ей клетке 4 кролика (во 2-ой у кролика 3+4=7 соседей).
Тогда в 4-ой клетке должно быть 3 кролика (в 3-ей у каждого кролика 1+3+3=7 соседей).
И, наконец, в 5-ой клетке будет 1 кролик.
В 4-ой у каждого 4+2+1=7 соседей, а в 5-ой у него 3 соседа.
Пусть во 2-ой клетке 5 кроликов.
Но в 3-ей клетке должен быть хотя бы 1 кролик, а тогда во 2-ой клетке у каждого будет по 8 соседей, что невозможно.
ответ 3: 4 кролика.
4) Больше 3 кроликов в 1-ой клетке быть не может, тогда во 2-ой клетке у каждого будет по 8 соседей, что невозможно.
Итак, мы получили, что в любом случае в 3-ей (средней) клетке сидит 4 кролика.
Причем только в одном случае расположение кроликов было симметричным относительно средней клетки.
Для решения данного задания, вспомним, что всякое составное число может быть единственным образом представлено в виде произведения простых множителей.
1) 27 : 3 = 9;
9 : 3 = 3;
3 : 3 = 1;
27 = 3 · 3 · 3.
2) 56 : 2 = 28;
28 : 2 = 14;
14 : 2 = 7;
7 : 7 = 1;
56 = 2 · 2 · 2 · 7;
3) 625 : 5 = 125;
125 : 5 = 25;
25 : 5 = 5;
5 : 5 = 1;
625 = 5 · 5 · 5 · 5.
4) 820 : 2 = 410;
410 : 2 = 205;
205 : 5 = 41;
41 : 41 = 1;
820 = 2 · 2 · 5 · 41.
5) 2772 : 2 = 1386;
1386 : 2 = 693;
693 : 3 = 231;
231 : 3 = 77;
77 : 7 = 11;
11 : 11 = 1
2772 = 2 · 2 · 3 · 3 · 7 · 11.
6) 702 : 2 = 351;
351 : 3 = 117;
117 : 3 = 39;
39 : 3 = 13;
13 : 13 = 1;
702 = 2 · 3 · 3 · 3 · 13.
7) 1224 : 2 = 612;
612 : 2 = 306;
306 : 2 = 153;
153 : 3 = 51;
51 : 3 = 17;
17 : 17 = 1;
1224 = 2 · 2 · 2 · 3 · 3 · 17