Пусть х литров расходует легковой автомобиль на 100 км, тогда грузовой расходует х+10 литров бензина. Легковой автомобиль проезжает у км на 1 литре, тогда у-5 км проезжает грузовой автомобиль на 1 литре бензина. Составим и решим систему уравнений х*у=100 (х+10)/100=1/(у-5)
Выразим значение х из первого уравнения: х=100/у Подставим его во второе уравнение: (100/у+10)/100=1/(у-5) 100/у:100+10/100=1/(у-5) (сократим на 10) (100/у+10)/10=10/(у-5) 10/у+1=10/(у-5) (умножим на у(у-5)) 10у*(у-5)/у+1у(у-5)=10*у(у-5)/(у-5) 10(у-5)+у²-5у=10у 10у-50+у²-5у-10у=0 у²-5у-50=0 D=a²-4bc=(-5)²-4*1*(-50)=25+200=225 у₁=(-b+√D)/2a=(-(-5)+15)/2*1=20/2=10 у₂=(-b-√D)/2a=(-(-5)-15)/2*1=-10/2=-5<0 - не подходит. ответ: легковой автомобиль, расходуя 1 л бензина, может преодолеть 10 км.
Легковой автомобиль проезжает у км на 1 литре, тогда у-5 км проезжает грузовой автомобиль на 1 литре бензина.
Составим и решим систему уравнений
х*у=100
(х+10)/100=1/(у-5)
Выразим значение х из первого уравнения:
х=100/у
Подставим его во второе уравнение:
(100/у+10)/100=1/(у-5)
100/у:100+10/100=1/(у-5) (сократим на 10)
(100/у+10)/10=10/(у-5)
10/у+1=10/(у-5) (умножим на у(у-5))
10у*(у-5)/у+1у(у-5)=10*у(у-5)/(у-5)
10(у-5)+у²-5у=10у
10у-50+у²-5у-10у=0
у²-5у-50=0
D=a²-4bc=(-5)²-4*1*(-50)=25+200=225
у₁=(-b+√D)/2a=(-(-5)+15)/2*1=20/2=10
у₂=(-b-√D)/2a=(-(-5)-15)/2*1=-10/2=-5<0 - не подходит.
ответ: легковой автомобиль, расходуя 1 л бензина, может преодолеть 10 км.
Пусть
а1 = 1 - количество очков, набранных за первую минуту игры,
а2 = 2 - количество очков, набранных за вторую минуту,
а3 = 4 - количество очков, набранных за третью минуту,
an - количество очков, набранных за последнюю минуту.
Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.
Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:

К тому же, эта сумма должна быть не меньше 100000