Пошаговое объяснение:
найдем точку пересечения прямых. для этого решим систему уравнений
из первого выразим х х= 2у-3
подставим во второе 2(2у-3)+у+5=0; 4у -6 +у +5 =0; 5у=1; у=0,2
тогда х = 2*0,2 -3 = 0,4 -3 = -2,6
это наша точка пересечения М(-2,6; 0,2)
теперь уравнение прямой, параллельной оси оу
направляющий вектор оси оу s=(0;1), можем его использовать в качестве направляющего вектора искомой прямой, т.к. они параллельны
тогда каконическое уравнение прямой, проходяшей через точку М(-2,6; 0,2) параллельно оси оу будет
перейдем к обшему виду и получим
х = -2,6
Решаем первое уравнение и находим значение х
-3(х - 2,5) - 4 = 1,5
-3х + 7,5 - 4 = 1,5
-3х = 1,5 + 4 - 7,5
-3х = -2
х = -2 : (-3)
х = 2/3 - корень уравнения
Подставляем значение х во второе уравнение и находим значение а
6х - 2а = 3х - 4
6 · 2/3 - 2а = 3 · 2/3 - 4
4 - 2а = 2 - 4
4 - 2а = -2
-2а = -2 - 4
-2а = -6
а = -6 : (-2)
а = 3
ответ: 3.
Проверка: при а = 3
6х - 2 · 3 = 3х - 4
6х - 6 = 3х - 4
6х - 3х = 6 - 4
3х = 2
х = 2 : 3
х = 2/3 - корень уравнения (первое и второе уравнения имеют один и тот же корень, то есть являются равносильными).
Пошаговое объяснение:
найдем точку пересечения прямых. для этого решим систему уравнений
из первого выразим х х= 2у-3
подставим во второе 2(2у-3)+у+5=0; 4у -6 +у +5 =0; 5у=1; у=0,2
тогда х = 2*0,2 -3 = 0,4 -3 = -2,6
это наша точка пересечения М(-2,6; 0,2)
теперь уравнение прямой, параллельной оси оу
направляющий вектор оси оу s=(0;1), можем его использовать в качестве направляющего вектора искомой прямой, т.к. они параллельны
тогда каконическое уравнение прямой, проходяшей через точку М(-2,6; 0,2) параллельно оси оу будет
перейдем к обшему виду и получим
х = -2,6
Решаем первое уравнение и находим значение х
-3(х - 2,5) - 4 = 1,5
-3х + 7,5 - 4 = 1,5
-3х = 1,5 + 4 - 7,5
-3х = -2
х = -2 : (-3)
х = 2/3 - корень уравнения
Подставляем значение х во второе уравнение и находим значение а
6х - 2а = 3х - 4
6 · 2/3 - 2а = 3 · 2/3 - 4
4 - 2а = 2 - 4
4 - 2а = -2
-2а = -2 - 4
-2а = -6
а = -6 : (-2)
а = 3
ответ: 3.
Проверка: при а = 3
6х - 2а = 3х - 4
6х - 2 · 3 = 3х - 4
6х - 6 = 3х - 4
6х - 3х = 6 - 4
3х = 2
х = 2 : 3
х = 2/3 - корень уравнения (первое и второе уравнения имеют один и тот же корень, то есть являются равносильными).