Точка c лежит на отрезке ab. через точку a проведена плоскость, а через точки в и с - параллельные прямые, пересекающие эту плоскость в точках в1 и с1. найти длину отрезка сс1, если точка с - середина отрезка ав и вв=9см1.
Тема (С+Б) 40 руб.; Даня (С+П) 45 руб.; Егор (Б+П) 55 руб; Алиса ( С+Б+П) ---? руб. Решение. 40 + 45 = 85 руб. заплатили вместе Даня и Тема, купив 2 сока,булочку и пирожное (2С+Б+П); 85 - 55 = 30 руб разница в деньгах, уплаченных Егором и совместно Темой и Даней, а в покупках это будет разница в 2 сока [( 2С+Б+П )-(С+П)=2С]; 30 : 2 = 15 руб. стоимость сока 15 + 55 = 70 руб. стоимость покупки Алисы(С+Б+П): сок(С) и данная в условии стоимость покупки Егора (Б+П) ответ: 70 рублей должна заплатить Алиса. Проверка: зная цену сока, из покупки Темы можно найти цену булочки 40-15= 25, а из покупки Дани цену пирожного 45-15=30; тогда покупка Егора (булочка и пирожное) 30+25=55, что соответствует условию.
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.
Даня (С+П) 45 руб.;
Егор (Б+П) 55 руб;
Алиса ( С+Б+П) ---? руб.
Решение.
40 + 45 = 85 руб. заплатили вместе Даня и Тема, купив 2 сока,булочку и пирожное (2С+Б+П);
85 - 55 = 30 руб разница в деньгах, уплаченных Егором и совместно Темой и Даней, а в покупках это будет разница в 2 сока [( 2С+Б+П )-(С+П)=2С];
30 : 2 = 15 руб. стоимость сока
15 + 55 = 70 руб. стоимость покупки Алисы(С+Б+П): сок(С) и данная в условии стоимость покупки Егора (Б+П)
ответ: 70 рублей должна заплатить Алиса.
Проверка: зная цену сока, из покупки Темы можно найти цену булочки 40-15= 25, а из покупки Дани цену пирожного 45-15=30; тогда покупка Егора (булочка и пирожное) 30+25=55, что соответствует условию.
Пошаговое объяснение:
Пусть R — радиус шара.
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.