120 = 2³ · 3 · 5
300 = 2² · 3 · 5²
100 = 2² · 5²
наименьшее общее кратное = 2³ · 3 · 5² = 600
480 = 2^5 · 3 · 5
216 = 2³ · 3³
144 = 2^4 · 3²
наименьшее общее кратное = 2^5 · 3³ · 5 = 4320
105 = 3 · 5 · 7
350 = 2 · 5² · 7
140 = 2² · 5 · 7
наименьшее общее кратное = 3 · 5² · 7 · 2² = 2100
280 = 2³ · 5 · 7
224 = 2^5 · 7
наименьшее общее кратное = 2^5 · 5 · 7 = 1120
подробнее - на -
23 шарика
Пошаговое объяснение:
Пусть имеется некоторое количество n шариков.
Тогда n - такое число, которое:
1. при делении его на 8 даёт остаток 7
2. при делении его на 6 даёт остаток 5
3. при делении его на 4 даёт остаток 3
4) n < 45
Из первых трёх пунктов следует, что число n + 1 делится на 8, 6 и 4. Найдём НОК (8,6,4), которое делится на 8, 6, 4 без остатка и которое меньше 45:
НОК чисел 8,6,4 - 24
24 - 1 = 23 < 45
24 * 2 - 1 = 47 > 45
Следовательно, шариков было 23.
Проверим:
23 : 8 = 2 (ост.7)
23 : 6 = 3 (ост.5)
23 : 4 = 5 (ост.3)
120 = 2³ · 3 · 5
300 = 2² · 3 · 5²
100 = 2² · 5²
наименьшее общее кратное = 2³ · 3 · 5² = 600
480 = 2^5 · 3 · 5
216 = 2³ · 3³
144 = 2^4 · 3²
наименьшее общее кратное = 2^5 · 3³ · 5 = 4320
105 = 3 · 5 · 7
350 = 2 · 5² · 7
140 = 2² · 5 · 7
наименьшее общее кратное = 3 · 5² · 7 · 2² = 2100
280 = 2³ · 5 · 7
140 = 2² · 5 · 7
224 = 2^5 · 7
наименьшее общее кратное = 2^5 · 5 · 7 = 1120
подробнее - на -
23 шарика
Пошаговое объяснение:
Пусть имеется некоторое количество n шариков.
Тогда n - такое число, которое:
1. при делении его на 8 даёт остаток 7
2. при делении его на 6 даёт остаток 5
3. при делении его на 4 даёт остаток 3
4) n < 45
Из первых трёх пунктов следует, что число n + 1 делится на 8, 6 и 4. Найдём НОК (8,6,4), которое делится на 8, 6, 4 без остатка и которое меньше 45:
НОК чисел 8,6,4 - 24
24 - 1 = 23 < 45
24 * 2 - 1 = 47 > 45
Следовательно, шариков было 23.
Проверим:
23 : 8 = 2 (ост.7)
23 : 6 = 3 (ост.5)
23 : 4 = 5 (ост.3)